

Geoff Huston APNIC

Address Distribution Framework

IPv4 - Current Status (July 2006)

What's the Question?

Some possibilities:

- □ When do we 'run out' of IPv4 address space?
- When will it be impossible to obtain an IPv4 address block?
- When will it be impossible to obtain an IPv4 address block for any price?
- □ When do we need to have IPv6 deployed?
- When will the current IPv4 address distribution policies fail?
- □ What would / might happen thereafter?

My Question:

When will the first RIR exhaust its IPv4 address pool, and be unable to service a request for IPv4 address space?

Address Distribution Framework

Prediction Model

- Total Address "demand" is expressed by the size of the allocated address pool
 - This is the sum of advertised and unadvertised address pools
 - So a total demand predictive model can be constructed from predictors of advertised and unadvertised address space

Total Address Demand

Time Series of Advertised and Unadvertised Addresses

Address Demand

Time Series of Advertised and Unadvertised Addresses

Advertised Address Growth

Unadvertised : Advertised Ratio

Unadvertised: Advertised Ratio - Trend Fit

Address Demand Prediction Model

30 25 20 Address Count (/8s) 15 10 5 Ô 2000 2002 2004 2006 2008 2010 2012 1998 Date Lacnic Pool

Modelling RIR Address Pools

RIPE Pool Various Pool Projection APNIC Pool ARIN Pool Afrinic Pool RIR Pool

Demand and Supply

My Question:

When will the first RIR exhaust its IPv4 address pool, and be unable to service a request for IPv4 address space?

Currently, the model predicts: March 2011

How reliable is this prediction?

- The model applies an exponential curve fits to recent (3 year) data and then undertakes forward extrapolation
 - Address consumption has been increasing over the past 24 months at a slightly faster than modelled exponential growth rate, so the model has been under-predicting for the past 6 months.
 - \Box A better fit to recent data would be via an O(2) polynomial.
 - Are we actually modelling industry growth (consumption) or consumption plus some level of hoarding behaviours?
 - Either way, there are a lot of uncertainties associated with this consumption model

What does this mean?

This model indicates that the current IPv4 address allocation framework will reach its logical conclusion in the 2009 – 2012 timeframe, when the first of the RIR's unallocated address pools is exhausted

What Then?

Some possibilities include:

- □ Policy shifts in the address distribution function?
- Emergence of markets that would mediate supply and demand of address transfer through a pricing function?
- □ Further impetus to NAT deployment?
- □ Impetus to IPv6 deployment?
- □ The destruction of the Internet as we know it?

Some Resources:

IPv4 Address Report

http://ipv4.potaroo.net

Internet Protocol Journal, Vol. 8, No. 3

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_8-3/ipv4.html

Internet Identifier Consumption

http://www.caida.org/research/id-consumption/

Thank You