Measuring IPv6 Day

Geoff Huston

Destination::IPv6

My brief for this session...

It would be great if you could consider to include following topics in your presentation:

What you observed on World IPv6 day:

• Statistics and measurements, and analysis (traffic, transition technology, performance comparison, DNS, OS, Browser, country/ regional break down etc.) on the day of W6D

(::ʃ::ʃ::ʃ::ʃ::ʃ

- What worked?
- What did not work?
- What should the AP region do next?

etc.

So what did we see on June 8 2011?

That we did not see on June 7 or June 9

Destination::IPv6

(::**ʃ::**ʃ::ʃ::ʃ:ːʃ:/]/::)

Nothing!

Because:

We are measuring the IPv6 behaviour of clients, not servers

And, on the whole, clients did not change anything they were doing on World IPv6 Day

Destination::IPv6

(::ʃ::ʃ::ʃ::ʃ

There is a story about measuring clients' capabilities and performance with IPv6.

But client behaviour is not a one day event story

It's a story about longer term behaviors and trends...

Destination::IPv6

(::*[*::*[*::*[*]]

Some Dual Stack Questions

- How many clients are capable of IPv6 access?
- What forms of IPv6 access are they using?
- Is their experience over Dual Stack better or worse than IPv4?

Destination::IPv6

(::ʃ::ʃ::ʃ::ʃ

An Approach to IPv6 Measurement

- We'd like a tool that will measure your clients' IPv6 behavior without having to add IPv6 to your website
 - Leverage cross-site URL fetches
- We'd like to integrate these measurements into existing tracking methods, and analytics framework

Destination::IPv6

(::*[*::*[*::*[*:]

• No new analysis tools needed

APNIC's IPv6 capability measurement system

http://labs.apnic.net

- Built on google 'analytics' method
 - Javascript, highly portable
 - Asynchronous, runs in the background
- Data integrated into Google Analytics reports
 - Graphs of 'events' to monitor IPv4, IPv6 and dual-stack

Destination::IPv6

(::<u>j</u>::j::j::j

- Configurable by website manager
 - Sample or every connection, extra tests etc

Additional Measurements

We extended this technique into Flash, and created an anonymous banner ad

The IPv6 capability test is built into the Flash code

Destination::IPv6

(::**j**::j::**j**:)

Banner Ad Fun

No clicks needed

(indeed we would prefer that clients did NOT click the ad, as it costs us more for a click!)

Impressions are really cheap

\$25 per day buys around 25,000 impressions

Every impression carries the complete IPv6 test set

But many users are ad-intolerant

Users tend to browse away from pages containing the ad in a far shorter time interval

(::ʃ::ʃ::ʃ::ʃ

We see a higher number of aborted test runs with the ad

Destination::IPv6

IPv6 capability, as seen by Google

Destination::IPv6

©2011 Google

APN

http://www.google.com/intl/en/ipv6/statistics/

IPv6 capability, as seen by APNIC

Clients who Prefer V6 in Dual Stack by V6 Address Type

Destination::IPv6

PNI

CONFERENCE

IPv6 capability, as seen by APNIC

Clients who Prefer V6 in Dual Stack by V6 Address Type

Destination::IPv6

PN

CONFERENCE

(::**]**::**]**::**]**

Is This All There Is?

- 0.3% 0.4% of clients is a very low number
 - And most of the IPv6 access we see here uses unicast IPv6
 - Where are all the 6to4 and Teredo auto-tunnels?
 - What is going on in the past few weeks with the drop in IPv6 access?
- Lets look harder by testing with an IPv6-only image

Destination::IPv6

(::**]**::**]**::**]**:**]**

IPv6 Capable Clients

V4 Dual Stack Clients who are V6 capable

IPv6 Capable Clients

V4 Dual Stack Clients who are V6 capable

IPv6: "could" vs "will"

Is This All There Is?

- 3% 4% of clients is still a very low number
 - Most of the access in IPv6-only is via 6to4 auto-tunnelling
 - Where is Teredo?
- Lets look harder by testing with an image that does not require a DNS lookup:

Destination::IPv6

(::*j*::*j*::*j*]

http://[2401:2000:6660::f003]/1x1.png

IPv6 Coerceable Clients

Clients who support V6 Literal by V6 Address Type

IPv6 Client Capabilities

Summary of Client V6 Capability

How Much IPv6 is Out There?

 Around <u>0.4%</u> of the Internet's clients can and will use IPv6 in a Dual Stack scenario

These clients are generally using a "native" IPv6 service

Around <u>4%</u> of the Internet's clients can use IPv6 in an IPv6-only scenario

The additional clients are generally using 6to4 auto-tunnelling

 Around <u>28%</u> of the Internet's clients are equipped with IPv6 capability that can be exposed

The additional clients are using Teredo auto-tunnelling

Destination::IPv6

Failure Observations

Dual Stack Loss Rate

APNIC 32

Destination::IPv6

(::j::j::j(j, j))::)

Dual Stack Loss Rate

(::j::j::j(j))::)

APNIC 32

Destination::IPv6

Dual Stack Loss

 15 in 10,000 clients are unable to fetch a web URL if presented with a dual-stack DNS name

Likely from older (Windows XP?) hosts

 This is not very reliable data – other measurement exercises indicate a dual stack failure rate of around 3 per 10,000 clients

Destination::IPv6

(:::{:::{:::{:::

Connection Failure

To attempt to look more precisely for **some** instances of connection failure, lets looking for connections that fail after the initial TCP SYN

Note that this approach does not detect failure of the initial SYN packet, so the results are a lower bound of total connection failure rates

Connection Failure

Relative Percentage of Failed Connections

IPv6 Connection Failure

V6 Failed Connections 6to4 IPv6 Failure Rate eredo IPv6 Failure Rate nicast IPv6 Failure Rate

29

% Connections

20

18

Is Teredo really THAT good?

Destination::IPv6

Teredo Connection Failure

Teredo uses an initial ICMPv6 exchange to assist in the Teredo Server / Relay state setup

Note that this approach does not detect failure of the initial ICMPv6 echo request , so the results are a lower bound of total connection failure rates

Destination::IPv6

IPv6 Connection Failure

V6 Failed Connections

% Connections

IPv6 Connection Failure

- Some **2%-5%** of **IPv6 unicast** connections fail!
 - This rate is better than IPv6 auto-tunnels, but is still 20x the rate of IPv4 connection failure
- Some **12% 15%** of **6to4** connections fail!
 - This is a very high failure rate!
 - The failure is most likely a protocol 41 filter close to the client that prevents incoming 6to4 packets reaching the client
- Some **45%** of **Teredo** connections fail!
 - This is an amazingly high failure rate!
 - Is STUN just broken as a NAT traversal technology? Or ...?

Destination::IPv6

(::<u>ʃ</u>::ʃ::ʃ::ʃ:

Conclusions

What can we say about the performance and robustness of a Dual Stack content service as a result of these observations?

Destination::IPv6

(::ʃ::ʃ::ʃ::ʃ

For an Online Service...

Converting a service to operate as a Dual Stack service is a viable option in today's environment

And the latest Chrome and OS Lion dual stack client software makes this mode work as well as, or possibly faster, than IPv4!

But:

 a very small fraction (~0.05%) of existing clients will experience a much slower service through timeout failover from V6 to V4

Destination::IPv6

 a very very small fraction (~0.03%) of existing clients will fail to connect to the dual stack service at all

What about Dual Stack Transition?

What about Dual Stack Transition?

End-host auto-tunnelling is <u>not</u> a solution!

- Auto-tunnelling appears to encounter many more performance and reliability problems than it solves in terms of IPv6 connectivity
- Auto-tunnelling is **not** proving to be a useful mainstream transition tool for IPv6

Destination::IPv6

(::j::j::j:

What about Dual Stack Transition?

If we want this transition to operate in a manner where IPv6 operates at least as well as IPv4 then end hosts really need to be connected to a IPv6 Unicast service delivered from their service provider

Destination::IPv6

Thank You

