and IPv6 Quality

og\ \—\vs-\m\ & G corye V\\c\«\o\e\So«\
L APN \C '

What does a browser do in a dual stack
environment?

Is this behaviour better — or worse — than
comparable behaviour in a IPv4-ony world?

Dual Stack Behaviour: V1.0

Unconditional preference for IPv6 over IPv4

If the local client has an active IPv6 interface then:
— Perform two DNS queries: A and AAAA record queries

— Wait for both to complete

— If the AAAA query succeeds then initiate the browser
connection using IPv6

— If there is no AAAA record then initiate the browser
connection using IPv4

Dual Stack Failure: V1.0

What if the IPv6 SYN does not elicit a response?
Then you fall back to use IPv4

How long will you wait before you fall back?
Windows: 3 SYN packets, 19 seconds
Mac OS X 6.8 and earlier: 11 SYN packets, 75 seconds

Linux: >= 11 SYN packets, between 75 to 180 seconds

Obviously, this sucks!

Dual Stack Behaviour: V2.0

Add Local Preference Rules:
1. unicast IPv6
2. unicast IPv4
3. 6to4 tunneled IPv6
4. Teredo IPv6

The effect of this preference table is that if the local
IPv6 interface is an auto-tunneled interface than it
will only be used when there is no local unicast
IPv6 interface and the remote site is IPv6-only

Dual Stack Failure: V2.0

What if the IPv6 SYN does not elicit a response?
Then you fall back to IPv4

How long will you wait before you fall back?
Windows: 3 SYN packets, 19 seconds
Mac OS X 6.8 and earlier: 11 SYN packets, 75 seconds
Linux: >= 11 SYN packets, between 75 to 180 seconds

i.e. no change — this still sucks.

If you are behind a broken V6 connection, your life is still
abject misery!

Dual Stack Behaviour: V2.5
Windows Vista and 7

While Vista and 7 has IPv6 on by default, if the
system is behind a NAT the IPv6 interface is a auto-
configured as a Teredo auto-tunnel interface

The modified behaviour is that these systems will
not even query the DNS for a AAAA record if the
only local IPv6 interface is a Teredo interface

— i.e. the Teredo interface is only used when there is no
precursor DNS lookup (e.g. use of IPv6 address literal
form of URL)

Dual Stack Behaviour: V2.5

Add Local Preference Rules:
1. unicast IPv6
2. unicast IPv4

3. 6to4 tunneled IPv6

47 TeteagIPve

The effect of this is that if the Windows box is
behind a NAT and does not have a unicast V6
connection then it shows IPv4-only behaviours

All this is broken!

* When the network sucks, this form of browser
behaviour makes it suck even more!

* These serialized approaches to dual stack
connectivity really don’t work well when
there is a connection failure.

 The technique used to identify a failure falls
back to a timeout — and this can be frustrating

to the user if a default OS-provided timeout is
used

We need better failures!

We need better failures!

e Altering the local preference rules may alter
the chances of encountering a failure, but
does not alter the poor method of
determining when you have failed

The fine print: The real problem here is that the assumption behind the TCP connection code in most
operating systems was that there was no fallback — you either connected to a given address or you report
failure. To provide a behaviour that was robust under adverse network conditions the OS connection code is
incredibly persistent (up to 3 minutes In the case of Linux default). But to use this same code in the
circumstance where you have alternate connection possibilities is just testing the user’s patience. So we need
to rethink this and use a connection strategy that tests all possibilities in a far shorter elapsed time.

How Yo conduct a dwo horse race..

| Dlar} Wi one Worse

How Yo conduct a dwo horse race..

Dlart Witk one wWorse

‘\g\ ‘\" AWCY oOn \140\7 ‘“’\QV‘\
send off dwe otwer
worse!

How to conduct a dwo horse race..

Or..

Nou can {re of 0 botw Worses
ad once and 3o with whichever s fasdest.

Dual Stack Behaviour: V3.0
Safari and Mac OSX 10.7 and later

Moderately Happy Eyeballs:

 Determine the preference between IPv4 and
IPv6 by maintaining a running performance
metric of per-protocol average RTT to each
cached destination address

* When DNS queries return both A and AAAA
records initiate a connection using the
protocol with the lowest current average RTT

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later

e |f the connection is not established within the
RTT estimate time interval then fire off a
connection attempt in the other protocol

— |.e. use a very aggressive timeout to trigger
protocol fallback

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later

e |f the cefieZtion 5 not'establighedmythipsthe
4

RTT g8timQre tinheinterval thigpAire off a
6nnedkion attempt in the’other protocol

) 4

— |.e. use a very aggressive timeout to trigger
protocol fallback

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later

e |f the cormBee@On4S wot establisheddVithirmhe RAT
nalite i€ intefyat then fired#a connettion
atterp##in the other protoce
* Only when you have tried ALL the addresses in the
first protocol family, then flip over to the other
protocol

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later

Dual Stack Behaviour: V3.1
Chrome Browser

Happyish Eyeballs:

* Fire off the A and AAAA DNS queries in
parallel

* |t’s a DNS race: Initiate a TCP connection with
the first DNS response

* |f the TCP connection fails to complete in
300ms then start up a second connection on
the other protocol

Dual Stack Behaviour: V3.2
Firefox and Fast Failover

Happier Eyeballs:

Fire off the A and AAAA DNS Queries

Initiate a TCP connection as soon as the DNS
response is received

It’s @ SYN race: Use the first connection to
complete the SYN-ACK handshake for data
retrieval

Close off the other connection

The bigger picture...

Firefox

MACOS X
10.7.2

Protocol Preference Jetding

F alover Twer \/q\\)es

http://www.potaroo.net/ispcol/2011-12/esotropia.html

MACOS X
10.7.2

Windows 7

Windows XP

Linux
2.6.40-3.0

i0S
5.0.1

The bigger picture...

Firefox

8.0.1
75s
IPv6

8.0.1
21s
IPv6

8.0.1
21s
IPv6

8.0.1
96s
IPv6

Firefox
fast-fail
8.0.1
Oms
SYN+ACK

8.0.1
Oms
SYN+ACK

8.0.1
Oms
SYN+ACK

8.0.1
Oms
SYN+ACK

Chrome

6.9.912.41
300ms
DNS

.0.874.121
300ms
DNS

.0.874.121
300ms
DNS

Opera

11.52
75s
IPv6

11.52
21s
IPv6

11.52
21ds
IPv6

11.60 bets
189s
IPv6

Safari

5.1.1
270ms
RTT

5.1.1
21s
IPv6

5.1.1
21s
IPv6

?
720ms
RTT

Explorer

9.0.8112
21s
IPv6

9.0.8112
21s
IPv6

http://www.potaroo.net/ispcol/2011-12/esotropia.html

Why?

Why add all this parallel complexity to
browser behaviour?

What was wrong with the initial concept of
“prefer IPv6 if you can, use IPv4 otherwise”?

s there really any difference in performance
petween IPv6 connections?

_ets see...

Measuring Dual Stack Quality

Enlist a large set of dual stack clients to connect
to an instrumented server using both IPv4 and
IPv6b

— Equip a number of web sites with a javascript
module that poses a number of image-blot
retrieval tests

— Extended this using Flash to embed the same tests
in a Google Image Ad*

& Twank \) 4o Goog\e
R\PE CC & QL for
Jour assistance to conduch
s experimend!

Daily Tests

Test Volume — Number of unique tests performed per day

le+06 T T T T T T T
900000 |- -
800000 |- _
700000 |- N _
el l

cC C\)(D\OO

600000 |- Ne & /e ot -
& ot*" 0ee
500000 |- Qc()@(‘* c@ o _
S Re<
400000 |-
300000 - :
€ e <
200000 |- xesis ~a
. xs
100000 - \Neb el _
0 A M | | |

2_0\0 2010.5 2010.75 2_0.\,\ 2011.25 2011.5 2011.75 2_0'\2_

Date

Measuring Dual Stack Quality

Enlist a large set of dual stack clients to connect
to an instrumented server using both IPv4 and
IPv6b

— For each successful connection couplet gather the
pair of RTT measurements on the SYN-ACK
exchanges

— Gather connection failure statistics (where a

“failure” is defined as a received SYN, but no
followup ACK)

{

Mnection Failure

=

Percent of Connections

80

Measuring Failure

Connection Failure Rate

70

60

40 |

30

20

2011

2011.2

20114

T T
V4 Failure Rate
V6 Failure Rate =

Iy

2011.6

Date

2011.8 2012

20122

Percent of Connections

Relative Connection Failure Rates

80

Connection Failure Rate

70 +

60

40 |

20

10

2011

2011.2

20114

%

W

T
V4 Failure Rate
V6 Failure Rate =

W

w,»w

2011.6

Date

2011.8

2012

2012.2

of Conne

Relative Connection Failure Rates

Connection Failure Rate

80

70 +

60

50

40 |

30

20

10

U

2011

2011.2

And il

20114

Wy

W

Wi,

s e VH celadive

Calure z‘q-’te drofPwny over
“‘\W'\Q.?

S g S

ld

T
% V4 Failure Rate
V6 Failure Rate =

i

P‘lke?

.

2011.6

Date

2011.8

2012

20122

V4 Connection Failure Rate

What is going on with IPv4?

Connection Failures - IPv4

16

14 |-

12 +

10 +

2011

2011.2

2012

2012.2

What is going on with IPv4?

The failure rate for V4 decreases as the volume of
experiments increases — which implies that the number of
“naked SYNs” being sent to the servers is not related to
the number of tests being performed.

Aside from residual IPv4 failures in the image fetch due to
device resets, connection dropouts, etc, the bulk of the
recorded failures here is probably attributable to bots
doing address scanning on port 80

V4 Connection Failure Rate

16

What is going on with IPv4?

Connection Failures - IPv4

14 |-

12 +

10 +

57¢\ Flooa Altacks

/

bok $CQAA\«\3W\\QO*-1 307

2012

2012.2

V6 connection Failure Rate

What about IPv6?

Connection Failure Rate - V6

100

80

60

40 +

20

T T T
All V6

Local Mircedo ‘Le\o‘y Failures
!

7 h

|

Why s e base {ailure rate
of all \Pv6 connechions sitding
at 40=? Twis s amazwngly baa!

2011

2011.2

20114

2011.6 2011.8 2012

2012.2

ction Failure Rate

V6 conne

V6 Failure Rate by Address Type

100

Connec

tion Failure Rate - V6

80 |-

60

40 +

20

Tereo\o -

AL V6 Averdse

6 do 4

Unicas M

k

2011

2011.2

20114

2011.6

2011.8

2012

2012.2

Teredo Failures

* Teredo connections use a 2-step connection
process:

— An ICMP exchange to establish the form of local
NAT behaviour (full cone, port restricted cone, ...)
and to set up the symmetric path

— A TCP 3-way handshake

* There are 2 failure modes:
— ICMP seen, no SYN
— [CMP seen, SYN seen, no ACK

ction Failure Rate

Conne

100

80
60
40

20

e L A L AV

Teredo Failure Rate

Teredo Connection Failures

T T T
Teredo Failure Rjjte s ﬂ

SYN Failure RRte =
ICMP Failure Rjte m—

|
\CMP Excnange (ails Yo complede

wt

s

\CMP completes, but QXN Excwange fails 4o complede

2011.25 2011.5 2011.75

Date

2012

It’s NAT Traversal Failure

e Teredo failure is around 40% of all connection
attempts

— Obviously, this is unacceptably high!

— This is unlikely to be local filtering effects given
that Teredo presents to the local NAT as
conventional IPv4 UDP packets

— More likely is the failure of the Teredo protocol to
correctly identify the behaviour mode of the local
NAT device

Working with Failure

A 40% connection failure is unworkable is almost all
circumstances

But one particular application can thrive in this
environment, and makes use of Teredo addresses:
Torrents

— Not many DPIl interceptors are sensitive to V6 in V4
UDP encap

— The massive redundancy of the data set across
multiple sources reduces the sensitivity of individual
session failures

6to4 Auto-tunnelling

6tod Auto-tunnelling technique
— Cannot operate through IPv4 NATs

— Relies on third party relays in BOTH directions
— Asymmetric traffic paths

— Some of the performance problems can be
mitigated by placing the reverse 6to4 relay into
the V6 service point

6t04 SYN Failure Rate

6to4 Failure Rate

6to4 Connection Failure

30 [[[[
IN-BUILT Relay (ASIA)
NON-ADJACENT Relay (US)
ADJACENT Relay (EUR)
25 |
20 |

Nov-11

Dec-11

Jan-12

Date

Feb-12

Mar-12

US

ASIA

EU

6to4 Failure is Local Failure

6to4 failure appears to be related to two
factors:

1. The client’s site has a protocol 41 firewall filter
rule for incoming traffic (this is possibly more
prevalent in AsiaPac than in Europe)

2. Load / delay / reliability issues in the server’s
chosen outbound 6to4 relay (noted in the data
gathered at the US server)

Even so, the 10% to 20% connection failure rate
for 6to4 is unacceptably high!

V6 Unicast Failures

January — March 2012:
110,761 successful V6 connecting endpoints
6,227 failures
That’s a failure rate of 5.3%!

7 clients used fe80:: link local addresses

7 clients used fc00:/7 ULA source addresses

2 clients used fec0::/16 deprecated site local addresses
16 clients used 1f02:d9fc::/16

Nobody used 3ffe::/16 prefixes!

What about the other 6,195 clients?

Unicast IPv6 Failures

8 were using unallocated unicast V6 addresses
66 were using unadvertised unicast V6 addresses

6,116 were using V6 addresses drawn from conventional
advertised V6 prefixes!

Local inbound filters appear to be a common
problem in IPv6

Where does V6 Fail?

Average - 5.3% of unicast V6 connections fail to complete
However, we saw wide variance across countries:

Highest:

Spain — 18%
Vietham — 16%
Indonesia — 13%
Hong Kong — 10%
Canada —10%
Sweden — 10%
Brazil — 6%

United States — 6%

Lowest:
Norway —0.2%
Australia—0.7%
France — 0.8%
Russia—1.7%
Italy — 2%

China — 3%
Germany — 3%
Japan —4%

Measuring Dual Stack Quality

* For each successful connection couplet gather
the pair of RTT measurements on the SYN-ACK

exchanges

* Use the server’s web logs to associate a couplet of

IPv4 and IPv6 addresses

* Use the packet dumps to collect R
from the SYN-ACK Exchange

information

Count

100000

10000

1000

100

10

Relative RTT, IPv6 to IPv4 (sec) for bilby on 2012/03/01

T

1 1 1 1 1 1 1 1 1 1 1 1
Tcrcd() _

OLOd s
global unicas! s—

| | 1 |

09 08 07 06 05 04 03 02 01 0 01 02

Relative RTT, IPv6 to IPv4 (sec)

0.3

Ly,

04 05

06 07 08

09

100000 _
‘S
10000
=
v
N
N
Q
<
1000
N
v
K
3
100
Cr
Q
¢
(\J)
K
0
>

Relative RTT, IPv6 to IPv4 (sec) for bilby on 2012/03/01

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tcrcd() s

OLOD s
global unicas! e—

\PV6 s Qaster \PVE s slower

6 Yo 4

Teredo
UN\CQS“ I I l i .

1 | 1 1

09 08 07 06 05 04 03 02 01 0 001 02 03 04 05 06 07

RTT Difference (v (ractions of a second)

0.8

09

100000

Relative RTT, IPv6 to IPv4 (sec) for bilby on 2012/03/01

10000

T

1000 -

Count

100 -

10

1 1 1 1 1
Teredo e—

global unicas! e—

Evrope-locatea

| | 1 |

09 08 07 06 -05

SQV‘VQT‘

Twis s unexpecied)

04 03 02 01 0 01 02

Relative RTT, IPv6 to IPv4 (sec)

0.3

Ly,

04 05

06 07

0.8

09

Why is Teredo slower?

The technique used here is to measure the
interval between the first received SYN and the
first received ACK

— But something is happening with Teredo

* we use inbuilt Teredo Relays, so the Teredo RTT should
precisely match the IPv4 RTT
— But we are measuring the initial SYN exchange

— It appears that there are some major setup delays in Teredo
that are occurring in the initial SYN ACK exchange

— The performance of CPE based NATs has a massive tail of
delay, woe and abject misery!

100000

Relative RTT, IPv6 to IPv4 (sec) for bilby on 2012/03/01

10000

T

1000 -

Count

100

L |

10

1 1 1 1 1 1
Teredo e—

global unicas! e—

Evrope-located Derver

Twis s unexpected)

T~

| | 1 |

i

09 08 07 06 05 04 03 02 01 0 01 02

Relative RTT, IPv6 to IPv4 (sec)

0.3

Ly,

04 05

06 07 08

09

Why is V6 faster in some cases?

e We see some sessions that have faster V6
RTTs than their paired IPv4 counterpart

— Because IPv6 is faster?

* This is possible —there are some strange IPv4 paths out
there

* But why would a Teredo SYN exchange be faster than a
native IPv4 SYN exchange?

— Becuase IPV4 is slower?

* |s this related to the behaviour characteristics of some
CPE based NATs and their handling of NAT bindings
during a a SYN exchange?

100000

Relative RTT, IPv6 to IPv4 (sec) for amchur on 2012/03/01

10000

ol

1000 -

Count

100 -

10

1 1 1 1 1 1 1 1 1 1 1 1
Teredo e—

global unicas! e—

Australia-located Qerver

Hun?

09 08 07 06 05 04 03 02 01 0 01 02

Relative RTT, IPv6 to IPv4 (sec)

0.3

04 05

06 07 08

~

||.1|| |

“uk?;

09

Relative RTT, IPv6 to IPv4 (sec) for amchur on 2012/03/01

IOOOOO_ I 1 1 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1

* The server’s V6 routing transit is not always optimal
|+ And noris V4 transit optimal in some cases

o000 L ¢ There are 6to4 delay peaks at 40ms and 150ms

"+ And the long tail of Teredo slowness

=

1000 - Ausdealia-located Derver

/ Huw?

S
Hun? Hun? |
100 |- / .
10 b I IJ. [N |

Ll

-1 09 08 07 06 05 04 03 02 01 0 01 02 03 04 05 06 07 08 09 l

Relative RTT, IPv6 to IPv4 (sec)

10000

1000 |

Count

10 |

Relative RTT, IPv6 to IPv4 (sec) for drongo on 2012/03/01

1 I 1 | | |

100 |

I 1 I 1 | I
Tcrcd() —

global unicast —

1 I 1 |) |

US-located Derver

RLewole outbound

6ot relay

\
&

08 07 06 05 04 03 02 0.1 0 01 02 03

04 05

06 07 08 09 1

Relative RTT., IPv6 to IPv4 (sec)

Count

10000

Relative RTT, IPv6 to IPv4 (sec) for drongo on 2012/03/19

| 1 |

I
Tcrcd() —

I 1 | 1 |

100

global unicast e—

U9-locatea Qerver
1000 |-

-1 09 -08

07 06 05 04

0.3

02 01 0 01 02

Relative RTT, IPv6 to IPv4 (sec)

0.3

Use of \ocal ovibounad
6o relay was

redvced ws skew

04 05 06 07 038

09

Observations

Is IPv6 as fast as IPv4?

If you are native in IPv6, then, yes!

The use of tunnels and overlays can make this worse
in some cases, but, in general, V6 is as fast as V4

Observations

Is IPv6 as robust as IPv4?
Sadly, No

The base failure rate of V6 connection attempts at

5% of the total V6 unicast traffic volume is simply
unacceptable as a service platform

But its not in the core network. It appears that this
is mainly self-inflicted with local edge firewall filter
settings that trap V6 packets

How Should Browsers Behave?

One view is to place both protocols on equal footing in a
parallel connection environment, using a “SYN-ACK race” with
parallel DNS and TCP session establishment

— E.g. Firefox with fast retransmit

Or reduce the server load by using a “DNS race” and take
whichever answers first, but prepare for failover using a very
aggressive timeout

— E.g. Chrome with 300ms failover timer

Or use local heuristics to estimate which is faster and failover
within 1 RTT interval

— E.g. Safari + Mac OS X >=10.7

How Should Browsers Behave?

But it’s still not enough!

Many access providers see their immediate future as having to
deploy IPv6 across their infrastructure, and at the same time

field CGNs
But how Sbig$ does the CGN need to be?

Generically, the CGN needs to be as big as the residual
preference for using IPv4 in dual stack scenarios

So how can we help this story along?

How Should Browsers Behave?

— Fire off the DNS queries in parallel

— If the DNS returns AAAA and A records, fire off a
V6 connection attempt first

— Use a reasonably aggressive fallback timer to
trigger V4 connection
E.g. Chrome with 300ms failover timer
E.g. Safari + Mac OS X with RTT-derived timer

How Should Browsers Behave?

Twank Nou

-i’-

Questions?

(::) APNIC ...

