The Post-IPocalypse Internet

Geoff Huston APNIC The mainstream telecommunications industry has a rich history

The mainstream telecommunications industry has a rich history

... of making very poor technology choices

The mainstream telecommunications industry has a rich history

...of making very poor technology guesses

and regularly being taken by surprise!

The Internet...

Has been a runaway success that has transformed not just the telecommunications sector, but entire social structures are being altered by the Internet! And now we've used up most of the Internet's 32bit address pool

The Internet...

Has been a runaway such which to has transformed not, which de telecommunication we pass or, but entire social constitutes are being alt of the formet! And - source used up most of the This point s 32 bit address pool

IETF Meeting - August 1990

IETF Meeting - August 1990

Depletion Dates · Assigned Class"B" network numbers Mar.11, 1994 · NIC "connected" Class B Apr. 26, 1996 network numbers Oct. 19, 1997 · NSFnet address space* · Assigned Class "A-B" network numbers Feb 17, 1998 ·NIC "connected" Class A-B network numbers Mar. 27, 2000 · BBN snapshots* May 4, 2002 * all types : may be earlier if network class address consumption is not equal.

What did we do back in 1992?

We bought some time by removing the CLASS A, B, C address structure from IP addresses

The CIDR Fix

Time Series of IANA Allocations

What else did we do back in 1992?

And we started working on a new Internet Protocol - to become IPv6 - to replace IPv4

We left the task of transition until after we had figured out what this new protocol would look like

Z Z Z Z Z Z Z

For a while this did not look to be an urgent problem...

CIDR worked!

Time Series of IANA Allocations

Meanwhile, we continued to build (IPv4) networks

Time Series of IANA Allocations

The rude awakening

Until all of a sudden the IPv4 address piggy bank was looking extremely empty...

IPv4 Address Allocations

Time Series of IANA Allocations

3 February 2011

Free Pool of IPv4 Address Space Depleted

IPv6 adoption at critical phase

Montevideo, 3 February 2011 - The Number Resource Organization (NRO) announced today that the free pool of available IPv4 addresses is now fully depleted. On Monday, January 31, the Internet Assigned Numbers Authority (IANA) allocated two blocks of IPv4 address space to APNIC, the Regional Internet Registry (RIR) for the Asia Pacific region, which triggered a global policy to allocate the remaining IANA pool equally between the five RIRs. Today IANA allocated those blocks. This means that there are no longer any IPv4 addresses available for allocation from the IANA to the five RIRs.

IANA assigns IPv4 addresses to the RIRs in blocks that equate to 1/256th of the entire IPv4 address space. Each block is referred to as a "/8" or "slash-8". A global policy agreed on by all five RIR communities and ratified in 2009 by ICANN, the international body responsible for the IANA function, dictated that when the IANA IPv4 free pool reached five remaining /8 blocks, these blocks were to be simultaneously and equally distributed to the five RIRs.

"This is an historic day in the history of the Internet, and one we have been anticipating for guite some time," states Raúl Echeberría. Chairman of the Number Resource Organi in (NRO), the official representative of the five RIRs. "The future of the Internet is in IPv6. All Internet stakeholders must now take rinitivaction to deploy IPv6."

ortance

this

"This is truly a major turning point in the on-going Executive Officer. "Nobody was caught of gua some time. But it means the adoption of IPVE is now a growth and foster the global innovation we've all come to expect."

" sad Rod Beckstrom, ICANN's President and Chief community has been planning for IPv4 depletion for quite since it will allow the Internet to continue its amazing

IPv6 is the "next generation" of the Internet Protocol, providing a hugely expanded address space and allowing the Internet to grow into the future. "Billions of people world wide use the Internet for everything from sending tweets to paying bills. The transition to IPv6 from IPv4 represents an opportunity for even more innovative applications without the fear of running out of essential Internet IP addresses." said Vice President of IANA Elise Gerich.

Adoption of IPv6 is now vital for all Internet stakeholders. The RIRs have been working with network operators at the local, regional, and global level for more than a decade to offer training and advice on IPv6 adoption and ensure that everyone is prepared for the exhaustion of IPv4.

"Each RIR will have its final full /8 from IANA, plus any existing IP address holdings to distribute. Depending on address space requests received, this could last each RIR anywhere from a few weeks to many months. It's only a matter of time before the RIRs and Internet Service Providers (ISPs) must start denying requests for IPv4 address space. Deploying IPv6 is now a requirement, not an option," added Echeberría. IPv6 address space has been available since 1999. Visit http://www.nro.net/ipv6/ for more information on IPv6, or

Labs.APNIC.NET - IPv4 Address Allocation Report

Report Date: 28-Jul-2012 08:00 UTC.

IPv4 Unallocated Address Pool Exhaustion:

03-Feb-2011

Projected RIR Address Pool Exhaustion Dates:

RIR	Projected Exhaustion Date	Remaining Addresses in RIR Pool (/8s)
APNIC:	19-Apr-2011	0.9208
RIPENCC:	03-Oct-2012	1.5342
ARIN:	26-Jul-2013	3.4733
LACNIC:	08-Jul-2015	3.4170
AFRINIC:	14-Oct-2019	4.1675

Projection of consumption of Remaining RIR Address Pools

The rude awakening

Until all of a sudden the IPv4 address piggy bank was looking extremely empty...

And transition to IPv6 is suddenly a very important topic!

So, how are we going with the IPv4 to IPv6 transition?

Do we really need to worry about this?

Do we really need to worry about this?

Surely IPv6 will just happen - its just a matter of waiting for the pressure of Ipv4 address exhaustion to get to sufficient levels of intensity.

Do we really need to worry about this?

Surely IPv6 will just happen - its just a matter of waiting for the pressure of Ipv4 address exhaustion to get to sufficient levels of intensity.

Or maybe not - let's look a bit closer at the situation ...

The "inevitability" of technological evolution

wites

The "inevitability" of technological evolution virhal wites

The "inevitability" of technological evolution

> Each time we shifted the technology base of the network, the cost efficiencies of the "new" technology in effect motivated the shift from the older technology to the new

The "inevitability" of technological evolution

> Now lets look at something a little more topical to today!

The "inevitability" of technological evolution?

The "inevitability" of technological evolution?

1926

Option 1: Flag Day!

1946 We all agree to turn off IPVY and turn on IPV6 EVERYWHERE All at the same time! All over the Internet!

Option 2: Parallel Transition!

We start to slide in IPv6 in parallel with Ipv4 Then we gradually phase out IPv6
Option 2: Parallel Transition!

Time

For this to work we have to start early and finish BEFORE IPVY address pool exhaustion

The small print: It's incredibly difficult for markets to plan without clear price signals, and we never managed to price future scarcity into the Internet model. Our chosen address distribution model was one that deliberately avoided any form of price-based market signaling. We sort of hoped that operations would price future risk. We were very wrong

Hybrid IPv4

The increasing scarcity of Ipv4 will force carriage providers to add address sharing mechanisms into the IPv4 network

Option 3: Hybrid Transition

ALGO

IPH

To get from here to there requires an excursion through an environment of CGNs, CDNs, ALGs and similar middleware solutions to IPVY address exhaustion CGNS

IPv6

transition.

CDNS

Transition requires the network owner to undertake capital investment in network service infrastructure to support IPv4 address sharing/rationing.

Transition requires the network owner to undertake capital investment in network service infrastructure to support IPv4 address sharing/rationing.

What lengths will the network owner then go to to protect the value of this additional investment by locking itself into this "transitional" service model for an extended/indefinite period?

The challenge often lies in managing the IPv6 transition from one technology to another CGNS transition. IPVH ALGS CDNs The risk in this transition phase is that the Internet carriage provider heads off in a completely different direction!

Coping with Demand

The problem is...

We now need to fuel an everexpanding Internet:

-without any feed of more IPv4 addresses

and

-without sufficient IPv6 deployment to cut over

And it's not getting any easier...

The metrics of IPv6 deployment could be a lot higher than they are today..

IPv6 capability, as seen by Google

Where is it?

% of users preferring IPv6 – per country

http://labs.apnic.net/index.shtml

Relatively, where is it?

Labs.APNIC.NET - IP Resource Per Country Distribution Report

Date: 28 Jul 2012

Index	ISO-3166 Code	Internet Users	V6 Use ratio	V6 Users (Est)	Population	Country
1	RO	8666211	8.26%	715829	22107682	Romania
2	FR	49996201	4.20%	2099840	64761919	France
3	EU	0	3.84%	0	0	European Union
4	LU	465690	3.01%	14017	509508	Luxembourg
5	JP	100938608	1.95%	1968302	126173260	Japan
6	US	247799128	1.32%	3270948	316473983	United States of America
7	СН	6448222	0.78%	50296	7658222	Switzerland
8	LA	593400	0.72%	4272	7325929	Lao People's Democratic Republic
9	HR	2652928	0.69%	18305	4481298	Croatia
10	NO	4576477	0.67%	30662	4708310	Norway
11	SK	4344163	0.67%	29105	5485055	Slovakia
12	SI	1418097	0.58%	8224	1997320	Slovenia
13	КН	474236	0.49%	2323	15297964	Cambodia
14	CZ	7216508	0.45%	32474	10178433	Czech Republic
15	CN	515964983	0.42%	2167052	1343658810	China
16	NL	15142363	0.40%	60569	16918842	Netherlands
17	DE	67963352	0.38%	258260	82180596	Germany
18	RU	61147943	0.37%	226247	138031475	Russian Federation
19	LT	2097214	0.35%	7340	3524731	Lithuania
20	FI	4663715	0.33%	15390	5263787	Finland

Absolutely, where is it?

Labs.APNIC.NET - IP Resource Per Country Distribution Report

Date: 28 Jul 2012

Index	ISO-3166 Code	Internet Users	V6 Use ratio	V6 Users (Est) ▲	Population	Country
6	US	247799128	1.32%	3270948	316473983	United States of America
15	CN	515964983	0.42%	2167052	1343658810	China
2	FR	49996201	4.20%	2099840	64761919	France
5	JP	100938608	1.95%	1968302	126173260	Japan
1	RO	8666211	8.26%	715829	22107682	Romania
17	DE	67963352	0.38%	258260	82180596	Germany
18	RU	61147943	0.37%	226247	138031475	Russian Federation
36	ID	55666542	0.11%	61233	248511349	Indonesia
16	NL	15142363	0.40%	60569	16918842	Netherlands
23	AU	19789983	0.27%	53432	22037844	Australia
40	GB	51839823	0.10%	51839	61640694	United Kingdom of Great Britain and Northern Ireland
7	СН	6448222	0.78%	50296	7658222	Switzerland
56	BR	86924909	0.05%	43462	205983199	Brazil
24	TW	16187666	0.26%	42087	23125238	Taiwan
27	UA	15197917	0.23%	34955	44831614	Ukraine
14	CZ	7216508	0.45%	32474	10178433	Czech Republic
10	NO	4576477	0.67%	30662	4708310	Norway
11	SK	4344163	0.67%	29105	5485055	Slovakia
39	CA	28005018	0.10%	28005	34319876	Canada
32	TH	18421298	0.13%	23947	67231017	Thailand

United States

IPv6 Preference by Week

France

IPv6 Preference by Week

China

IPv6 Preference by Week

Singapore

IPv6 Preference by Week

AsiaPac IPv6 User Ratio

AsiaPac IPv6 User Population

Counting IPv6...

Some 50% of the Internet's transit ISPs support IPv6 transit

Some 50% of the Internet's host devices have an active IPv6 stack

and the rest run Windows XP!

But only 0.7% of the Internet actually uses IPv6!

and the problem appears to lie in the last mile access infrastructure!

What's gone wrong?

It seems that we've managed to achieve only 2 out of 3 necessary prerequisites for IPv6 deployment

To support further growth the access industry has to secure more IpVY addresses, deploy (and fund) IPVY address extension mechanisms, in addition to funding an IPV6 deployment program

What's gone wrong?

It seems that we've managed to achieve only 2 out of 3 necessary prerequisites for IPv6 deployment

Economics!

Economics!

The Internet's last mile access is mired in commodity utility economics. Relentless competition has resulted in a sector where margins are thin. A move to IPV6 represents expenditure without immediate revenue gain. This is classic case of economic dislocation in an unbundled industry, where expenditure in one sector. -carriage- yields benefits in another sector: -content-

This situation represents a period of considerable uncertainty for our industry

if i wait will equipment get is ipv6 really ready for prime time yet? cheaper or will the user experience get worse? U. How beech nts a Will turning on iPv6 increase my shelpdesk call rate? **le** 0 4 1, Sere lustry How long transit How much is all this going to cost? if we deploy CGNs to keep Can i afford it? Will my iPv4 running, then how long should we plan to keep them revenue base sustain this additional cost? in service?

Where is this heading?

In the next five years...

In the next five years...

So we need to chose carefully!

We need to think about how to build a post-PC world where content, computation, storage and communications are sustainable abundant and openly available commodities.

And its not yet clear which path the internet will take!

And its not yet clear which path the internet will take! market forces

If IPv6 is what we are after as an open and accessible platform for further network growth and innovation then the public interest in a continuing open and accessible network needs to be expressed within the dynamics of market pressures.

Today's question is:

How can we do this?

How can we "manage" this transition?

To ensure that the industry maintains a collective focus on IPv6 as the objective of this exercise!

How can we "manage" this transition?

To ensure that the industry maintains a collective focus on IPv6 as the objective of this exercise!

And to ensure that we do not get distracted by attempting to optimize what were intended to be temporary measures
How can we help the Internet through this transition?

Or at least, how can we avoid making it any worse than it is now?

Yes, that was intentionally left blank!

I really don't know what will work, And as far as I can see, nor does anyone else! But even though I don't have an answer here, I have some thoughts to offer about this issue of pulling the Internet though this transition

Three thoughts...

Firstly

If we want one working Internet at the end of all this, then keep an eye on the larger picture

Think about what is our common interest here

and try to find ways for local interests to converge with our common interest in a single cohesive network that remains open, neutral, and accessible

Secondly

Addresses should be used in working networks, not hoarded

- Scarcity generates pain and uncertainty
- Hoarding exacerbates scarcity in both its intensity and duration
- Extended scarcity prolongs the pain and increases the unpredictability of the entire transition process
- Closed or opaque address markets create asymmetric information that encourages speculation and hoarding, further exacerbating the problem

Finally...

Bring it on! A rapid onset of exhaustion and a rapid transition represents the best chance of achieving an IPv6 network as an outcome

The more time we spend investing time, money and effort in deploying IPVY address extension mechanisms, the greater the pain to our customers, and the higher the risk that we will lose track of the intended temporary nature of transition and the greater the chances that we will forget about IPv6 as the objective! The risk here is no less than the future of open networking and open content - if we get this wrong we will recreate the old stifling vertically bundled carriage monopolies of the telephone era! And at that point we've lost everything!

Thank You!

