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Bad TCP

What if you don’t get back a SYN+ACK?

— Most TCP stack implementations will retry sending
the original SYN packet

— And again
— And again



TCP SYN Attempts

Windows: {'.1
wait 3 seconds, resend the SYN
wait 6 seconds, resend the SYN
wait 12 seconds, report connection failure

19 seconds, 3 SYN packets



TCP SYN Attempts

-
FreeBSD: >
wait 1 second, resend the SYN S (V\
wait 1 second, resend the SYN -

wait 1 second, resend the SYN

wait 1 second, resend the SYN

wait 1 second, resend the SYN

wait 2 seconds, resend the SYN

wait 4 seconds, resend the SYN

wait 8 seconds, resend the SYN

wait 16 seconds, resend the SYN

wait 32 seconds, resend the SYN

wait 8 seconds, report connection failure

75 seconds, 11 SYN packets

sysctl net.tcp.keepinit = 75000



TCP SYN Attempts

Linux:
wait 3 seconds, resend the SYN
wait 6 seconds, resend the SYN
wait 12 seconds, resend the SYN
wait 24 seconds, resend the SYN
wait 48 seconds, resend the SYN
wait 96 seconds, report connection failure

189 seconds, 6 SYN packets

sysctl net.ipv4.tcp_syn_retries=5



Bad TCP

Why are all these implementations so slow to
signal failure?
— These settings date back more than a decade

— They reflect a connection strategy where
persistence in attempting to connect had few
downsides

— There was no Plan B! g
T



TCP in a Dual Stack Environment

What changes should we make to TCP-based
applications in an environment where there IS a
Plan B?

— What do we do now?

— Can we do better?



Dual Stack Behaviour: V1

Py 2
IPV6 First: A i(\j&

Unconditional preference for IPv6 over IPv4



Dual Stack Behaviour: V1 )
”m )
IPV6 First: &2 i(\j

Unconditional preference for IPv6 over IPv4

If the local client has an active IPv6 interface then:
— Perform two DNS queries: A and AAAA record queries

— Wait for both to complete

— If the AAAA query succeeds then initiate the browser
connection using IPv6

— If there is no AAAA record then initiate the browser
connection using IPv4



Dual Stack Behaviour: V1

Why this unconditional preference for IPv6?

— The dual stack transition plan’s last phase is the
turning off of IPv4 when all the network is IPv6
capable

— But if hosts still prefer to use IPv4 then this final
phase will never complete

— The IPv6 preference is designed to maximize Ipv6
use through the transition



Dual Stack Failure: V1

What if the IPv6 connection attempt does not elicit a response?
Then you fall back to use IPv4

How long will you wait before decide that this has failed and you
need fall back?

As long as it takes for the Operating System’s TCP system to fail
- Windows: 3 SYN packets, 19 seconds

- Mac OS X 6.8 and earlier: 11 SYN packets, 75 seconds

- Linux: >= 11 SYN packets, between 75 to 180 seconds

Obviously, this sucks!



Dual Stack Behaviour: V2
Py

Native IPv6 First: A
Unconditional preference for native IPv6 over IPv4

Add Local Preference Rules:
unicast IPv6

unicast IPv4

6to4 tunneled IPv6
Teredo IPv6

B W e

The effect of this preference table is that if the local IPv6 interface is
an auto-tunneled interface than it will only be used when there is no
local unicast IPv6 interface and the remote site is IPv6-only



Dual Stack Failure: V2

What if the IPv6 SYN does not elicit a response?
Then you fall back to IPv4

How long will you wait before you fall back?
As long as it takes for the Operating System’s TCP system to fail
Windows: 3 SYN packets, 19 seconds

i.e. no change — this still sucks.

If you are behind a broken V6 connection, your life is still abject
misery!



Dual Stack Behaviour: V3
Windows Vista and 7 oy

While Vista and 7 has IPv6 “on” by default, if the systemis
behind a NAT the IPv6 interface is a auto-configured as a Teredo
auto-tunnel interface

The modified behaviour is that these systems will not even

query the DNS for a AAAA record if the only local IPv6 interface
is a Teredo interface

— i.e.the Teredo interface is only used when there is no precursor DNS
lookup (e.g. use of IPv6 address literal form of URL)



Dual Stack Behaviour: V3
Py

Native IPv6 First: ‘
Unconditional preference for native IPv6 over IPv4

(and avoid Teredo)

Add Local Preference Rules:
1. unicast IPv6
2. unicast IPv4
3. 6to4 tunneled IPv6

The effect of this is that if the Windows box is behind a NAT and does
not have a unicast V6 connection then it shows IPv4-only behaviours
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This is broken!

Parallel DNS, followed by Serial TCP:
* When the network sucks, this form of browser behaviour
makes it suck even more!

* These serialized approaches to dual stack connectivity really
don’t work well when there is a connection failure.

* The technique used to identify a failure falls back to a timeout
— and this can be frustrating to the user if a default OS-
provided timeout is used



We need beter {aluces)



We need better failures!

e Altering the local preference rules may alter
the chances of encountering a failure, but
does not alter the poor method of
determining when you have failed

The fine print: The real problem here is that the assumption behind the TCP connection code in most
operating systems was that there was no fallback — you either connected to a given address or you report
failure. To provide a behaviour that was robust under adverse network conditions the OS connection code is
incredibly persistent (up to 3 minutes In the case of Linux default). But to use this same code in the
circumstance where you have alternate connection possibilities is just testing the user’s patience. So we need
to rethink this and use a connection strategy that tests all possibilities in a far shorter elapsed time.
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How to conduct a dwo horse race..

Or..
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Safari and Mac OSX 10.7 and later

Moderately Happy Eyeballs: !

 Determine the preference between IPv4 and IPv6 by
maintaining a running performance metric of per-protocol
average RTT to each cached destination address:

nettop -n -m route
* When DNS queries return both A and AAAA records initiate a

connection using the protocol with the lowest current
average RTT



Safari and Mac OSX 10.7 and later

* |f the connection is not established within the RTT estimate
time interval then fire off a connection attempt in the other
protocol

— i.e. use a very aggressive timeout to trigger protocol fallback




Safari and Mac OSX 10.7 and later
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Safari and Mac OSX 10.7 and later

If the connsn gstablistied withindhe RTL estimate
time i o An fite giff a gOnnedtion alemut infthebther
p F10CL

) 4

— i.e. yfefa very aggressive timeout teftrigger protocol fallback

— What happens if there are multiple addresses for the name?
* Then you try each address in turn, using the extended 75 second TCP timeout




Safari and Mac OSX 10.7 and later

e |fthe conn iseq withi- =, . &\)Q\ e
) ) ] . )‘ W

~.wwcol fallback

.. nappens if there are multiple addresses for the name?
* Then you try each address in turn, using the extended 75 second TCP timeout




Chrome

A"
Happyish Eyeballs: -
* Fire off the A and AAAA DNS queries in parallel
* It’s a DNS race: Initiate a TCP connection with the
first DNS response

* If the TCP connection fails to complete in 300ms
then start up a second connection on the other

protocol

Yes, 300ms is arbitrary. But assuming that a fast DNS response
equates to a fast data path RTT is equally arbitrary!



Firefox and Fast Failover Q

4

Happier Eyeballs:

Fire off the A and AAAA DNS Queries

Initiate a TCP connection as soon as the DNS response is
received

It’s a SYN-ACK race: Use the first connection to complete the
SYN-ACK handshake for data retrieval

Close off the other connection

This makes a little more sense — now the data path RTT
has some influence over protocol selection, and the user
connection will proceed with the protocol that completes
the connection in the least time



MACOS X
10.7.2

Windows 7

Windows XP

Linux
2.6.40-3.0

i0S
5.0.1

The bigger picture...

Firefox

8.0.1
75s
IPv6

8.0.1
21s
IPv6

8.0.1
21s
IPv6

8.0.1
96s
IPv6

Firefox
fast-fail
8.0.1
Oms
SYN+ACK

8.0.1
Oms
SYN+ACK

8.0.1
Oms
SYN+ACK

8.0.1
Oms
SYN+ACK

Chrome

6.9.912.41
300ms
DNS

.0.874.121
300ms
DNS

.0.874.121
300ms
DNS

Opera

11.52
75s
IPv6

11.52
21s
IPv6

11.52
21ds
IPv6

11.60 bets
189s
IPv6

Safari

5.1.1
270ms
RTT

5.1.1
21s
IPv6

5.1.1
21s
IPv6

?
720ms
RTT

Explorer

9.0.8112
21s
IPv6

9.0.8112
21s
IPv6

http://www.potaroo.net/ispcol/2011-12/esotropia.html




Why?

Why add all this parallel complexity to
browser behaviour?

What was wrong with the initial concept of
“prefer IPv6 if you can, use IPv4 otherwise”?

s there really any difference in performance
petween IPv6 connections?

_ets see...



Measuring Dual Stack Quality

Enlist a large set of dual stack clients to connect
to an instrumented server using both IPv4 and
IPv6b

— Equip a number of web sites with a javascript
module that poses a number of image-blot
retrieval tests

— Extended this using Flash to embed the same tests
in a Google Image Ad*

& Twank vou Yo Google, \SOC
RA\PE NCC & \C Cor

Jour assistance o conducs
s experimend!



Test Volume — Number of unique tests performed per day
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Measuring Dual Stack Quality

Enlist a large set of dual stack clients to connect
to an instrumented server using both IPv4 and
IPv6b

— Gather connection failure statistics (where a
“failure” is defined as a received SYN, but no
followup ACK)

— For each successful connection couplet gather the

pair of RTT measurements on the SYN-ACK
exchanges
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% Protocol Connections

Measuring Failure

Connection Failure Rate
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% Protocol Connections

Measuring Failure

Connection Failure Rate
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% Protocol Connections
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What is going on with IPv4?

The failure rate for V4 decreases as the volume of
experiments increases — which implies that the number of
“naked SYNs” being sent to the servers is not related to
the number of tests being performed.

Aside from residual IPv4 failures in the image fetch due to
device resets, connection dropouts, etc, the bulk of the
recorded failures here is probably attributable to bots
doing address scanning on port 80 passing across the
addresses of the test servers
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% Protocol Connections

What about IPv6?

0% L WT’J K’r e J i
I | m
\V\m’ s _the base Calure rate
20% |- of all \Pv6 connections sitding i
at 30+ - 40-+?
S | | T\'\‘\$ S O\VV\QZ‘\'(\S\\/ \de\ | .. | ...

03/11 05/11 07/11 09/11 11/11 01/12 03/12 05/12 07/12 09/12

Date



% Connections

V6 Failure Rate by Address Type

V6 Failed Connections
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V6 Failure Rate by Address Type

V6 Failed Connections
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Teredo Failures

* Teredo connections use a 2-step connection
process:

— An ICMP exchange to establish the form of local
NAT behaviour (full cone, port restricted cone, ...)
and to set up the symmetric path

— A TCP 3-way handshake

* There are 2 failure modes:
— ICMP seen, no SYN
— [CMP seen, SYN seen, no ACK



% Connections

Teredo Failure Rate

V6 Teredo Failed Connections (*)

100% ————— I L R L R R L R L R L B B L R R L R
Teredo IPv6 Failure Rate
Teredo IPv6 SYN Failure Rate
T Teredo IP\#MPEailure Rate
80% |- _
| k
\CMP Exchange {ails 1o complete N
60% |- \ _
N
40% |- LJ] -
l‘w g J E WA
20% |- _
\CMP compledes, but QNN Exchange {ails Yo complede
0%
03/11 05/11 07/11 09/11 11/11 01/12 03/12 05/12 07/12 09/12

Date



It’s NAT Traversal Failure

* Teredo failure is around 35% of all connection attempts

Obviously, this is unacceptably high!

This is unlikely to be local filtering effects given that Teredo presents
to the local NAT as conventional IPv4 UDP packets

More likely is the failure of the Teredo protocol to correctly identify
the behaviour mode of the local NAT device

The ICMP failure rate comes from the limited number of UDP NAT
traversal models used by the Teredo handshake protocol vs the
variance of UDP NAT traversal models used in networks

The SYN failure rate is a result of the Teredo protocol making incorrect
assumptions about the NAT’s behaviour



Working with Failure

A 35% connection failure is unworkable is almost all
circumstances

But one particular application can thrive in this
environment, and makes use of Teredo addresses — Bit

Torrent
— The massive redundancy of the data set across multiple

sources reduces the sensitivity of individual session
failures

— Not many DPI interceptors are sensitive to Teredo’s V6 in
V4 UDP encap

— Microsoft continues to ship active Teredo in its Windows
platform



6to4 Auto-tunnelling

6tod Auto-tunnelling technique
— Cannot operate through IPv4 NATs

— Relies on third party relays in BOTH directions

* Asymmetric traffic paths

— Some of the performance problems can be
mitigated by placing the reverse 6to4 relay into
the V6 service point
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% Connections
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6t04 SYN Failure Rate

6to4 Failure Rate

6to4 Connection Failure

30 [ [ [ [
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6to4 Failure is Local Failure

6to4 failure appears to be related to two factors:

1. The client’s site has a protocol 41 firewall filter rule
for incoming traffic (this is more prevalent in
corporate environments than home environments)

2. Load / delay / reliability issues in the server’s chosen

outbound 6to4 relay (noted in the data gathered at
the US server)

Even so, the 10% connection failure rate for 6to4 is
unacceptably high!



V6 Unicast Failures

January — August2012:
962,737 successful V6 connecting endpoints
22,923 failures
That’s a connection failure rate of 2.3%!

13 clients used fe80:: link local addresses

139 clients used fc00:/7 ULA source addresses

22 clients used fec0::/16 deprecated site local addresses

16 clients used 1f02:d9fc::/16

1 client used 1f01:7e87:12:10ca::/64

1 client used a 3ffe::/16 address

7 clients used :: IPv4 —mapped addresses (10/8, 192.168/16)
7 clients used ::ffff:<IPv4>-mapped addresses

What about the other 22,717 clients?



Unicast IPv6 Failures

38 were using unallocated unicast V6 addresses
150 were using unadvertised unicast V6 addresses

22,529 were using V6 addresses drawn from conventional
advertised V6 prefixes!

Local inbound filters appear to be a common
problem in IPv6



Where does V6 Fail?

Average - 2.3% of unicast V6 connections fail to complete
However, we saw wide variance across countries:

Highest: Lowest:
Pakistan - 35% France — 0.3%
Hong Kong - 18% UK—-0.3%
Canada - 12% Germany — 0.9%
Viethnam —12% Norway — 0.9%
Romania — 10% Australia — 0.9%
Indonesia — 10% Japan - 1%
Taiwan — 10% Greece — 1%
Malaysia — 7% Italy — 1%

New Zealand — 7% Finland — 1%



AS

AS38083
AS24226
AS1312
AS12552
AS31334
AS237
ASS55
AS17727
AS21453
AS2516
AS6661
AS2107
AS12322
AS3676
AS4802
AS39326
AS53347
AS3333
AS22394
AS19782
AS5661
AS4608
AS3582
AS22548
AS8426
AS2852
AS57
AS7018
AS1103
AS55391

The “Good” IPv6 AS’s

V6 connection AS Description

Failure Rate

0.
1%
1%
1%
1%
1%
.2%
.2%
2%
2%
2%
2%
.2%
.2%
.3%
.3%
.3%
.3%
.3%
.3%
.3%
.3%
.3%
.3%
.3%
. 4%
. 4%
A%
A%
.5%

O O O O OO OO OO0 O0ODOO0ODO0ODO0OO0OO0ODO0OO0OO0OO0ODOOO0OOOoOOoOOo

0%

AU
Nz
us
SE
DE
us
us
ID
RU
JP
LU
SI
FR
us
AU
GB
us
NL
us
us
us
AU
us
BR
ES
cz
us
us
NL
JpP

CURTIN-UNI-AS-AP Curtin University

CATALYST-IT-AS-AP Catalyst IT

VA-TECH-AS - Vvirginia Polytechnic Institute and State Univ.
IPO-EU IP-Only Telecommunication Networks AB
KABELDEUTSCHLAND-AS Kabel Deutschland Vertrieb und Service GmbH
MERIT-AS-14 - Merit Network Inc.

UPENN-CIS - University of Pennsylvania

NAPINFO-AS-AP PT. NAP Info Lintas Nusa

FLEX-AS Flex Ltd

KDDI KDDI CORPORATION

EPT-LU Entreprise des P. et T. Luxembourg

ARNES-NET ARNES

PROXAD Free SAS

UIOWA-AS - University of Iowa

ASN-IINET iiNet Limited

GOSCOMB-AS Goscomb Technologies Limited
PREMIER-COMMUNICATIONS - Premier Communications
RIPE-NCC-AS Reseaux IP Europeens Network Coordination Centre (RIPE NCC)
CELLCO - cCellco Partnership DBA Verizon Wireless
INDIANAGIGAPOP - Indiana University

USF - UNIVERSITY OF SOUTH FLORIDA

APNIC-AP Asia Pacific Network Information Centre

UONET - University of Oregon

Comite Gestor da Internet no Brasil

CLARANET-AS ClaraNET LTD

CESNET2 CESNET, z.s.p.o.

UMN-REI-UC - University of Minnesota

ATT-INTERNET4 - AT&T Services, Inc.

SURFNET-NL SURFnet, The Netherlands

MF-NATIVE6-E INTERNET MULTIFEED CO.



AS

AS29113
AS1659
AS45230
AS18119
AS17451
AS24173
AS12271
AS17709
AS11427
AS2907
AS8591
AS812
AS12046
AS3356
AS4725
AS8970
AS17579
AS7539
AS3262
AS11537
AS16880
AS9431
AS4528
AS45809
AS2576
AS17996
AS3562
AS24514

The “Not So Good” IPv6 AS’s

V6 connection AS Description

Failure Rate
12.
12.
12.
12.
13.
13.
15.
16.
18.
18.
19.
19.
19.
20.
20.
21.
21.
22.
22.
25.
32.
33.
33.
34.
42,
42.
45,
58.

5%
6%
6%
8%
6%
8%
1%
8%

cz
T™W
NZ
NZ
ID
VN
us
T™W
us
JP
ST
CA
MT
us
JP
PL
KR
W
ES
us
us
NZ
HK
Nz
us
ID
PK
MY

SLOANE-AS UPC Ceska Republica, s.r.o.

ERX-TANET-ASN1 Tiawan Academic Network (TANet) Information Center
UBERGROUP-AS-NZ UberGroup Limited

ACSDATA-NZ ACSData

BIZNET-AS-AP BIZNET ISP

NETNAM-AS-AP Netham Company

SCRR-12271 - Road Runner HoldCo LLC

EBT Eastern Broadband Telecom Co.,Ltd

SCRR-11427 - Road Runner HoldCo LLC

SINET-AS Research oOrganization of Information and Systems, National Institute of Informatics
AMIS AMiS

ROGERS-CABLE - Rogers Cable Communications Inc.

ASN-CSC-UOM University of Malta

LEVEL3 Level 3 Communications

ODN SOFTBANK TELECOM Corp.

WASK WROCMAN-EDU educational part of WASK network, wroclaw, Poland
KREONET2-AS-KR Korea Institute of Science and Technology Information
TANET2-TW TANet2, sponsored by NSC, TAIWAN

SARENET SAREnet, Spain

ABILENE - Internet2

TRENDMICRO Global IDC and Backbone of Trend Micro Inc.

AKUNI-NZ The University of Auckland

HKU-AS-HK The University of Hong Kong

NZRS-AS-AP ASN for .nz registry content

DOT-AS - U. S. Department of Transportation

UIINET-ID-AP PT Global Prima Utama

SNLL-NET-AS - Sandia National Laboratories

MYREN-MY Malaysian Research & Education Network



Comparing RTTs

* For each successful connection couplet gather
the pair of RTT measurements on the SYN-ACK
exchanges

* Use the server’s web logs to associate a couplet of
IPv4 and IPv6 addresses

e Use the packet dumps to collect RTT information
from the SYN-ACK Exchange
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Why is Teredo slower?

The technique used here is to measure the
interval between the first received SYN and the
first received ACK

— But something is happening with Teredo

* we use inbuilt Teredo Relays, so the Teredo RTT should
precisely match the IPv4 RTT
— But we are measuring the initial SYN exchange

— It appears that there are some major setup delays in Teredo
that are occurring in the initial SYN ACK exchange

— The performance of CPE based NATs has a massive tail of
delay, woe and abject misery!
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Why is V6 faster in some cases?

e We see some sessions that have faster V6
RTTs than their paired IPv4 counterpart

— Because IPv6 is faster?

* This is possible —there are some strange IPv4 paths out
there

* But why would a Teredo SYN exchange be faster than a
native IPv4 SYN exchange?

— Becuase IPV4 is slower?

* |s this related to the behaviour characteristics of some
CPE based NATs and their handling of NAT bindings
during a a SYN exchange?
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Ovservations

Is IPv6 as fast as IPv4?

If you are native in IPv6, then, yes!

The use of tunnels and overlays can make this worse
in some cases, but, in general, V6 is as fast as V4




Ovservations

Is IPv6 as robust as IPv4?
Sadly, No

The base failure rate of V6 connection attempts at

~2% of the total V6 unicast traffic volume is simply
unacceptable as a service platform

But its not in the core network. It appears that this
is mainly self-inflicted with local edge firewall filter
settings that trap V6 packets




How Should Browsers Behave?

One view is to place both protocols on equal footing in a
parallel connection environment, using a “SYN-ACK race” with
parallel DNS and TCP session establishment

— E.g. Firefox with fast retransmit

Or reduce the server load by using a “DNS race” and take
whichever answers first, but prepare for failover using a very
aggressive timeout

— E.g. Chrome with 300ms failover timer

Or use local heuristics to estimate which is faster and failover
within 1 RTT interval

— E.g. Safari + Mac OS X >=10.7



How Should Browsers Behave?



Everything is connected...

Many access providers see their immediate future as having to
deploy IPv6 across their infrastructure, and at the same time

field CGNs
But how Sbig$ does the CGN need to be?

Generically, the CGN needs to be as big as the residual
preference for using IPv4 in dual stack scenarios

Browser and operating system behaviours have a direct
impact on the scaling pressures for CGN deployment

So how can we help this story along?



How Should Browsers Behave?

— Fire off the A and AAAA DNS queries in parallel

— When the DNS returns an AAAA response fire off a V6
connection attempt immediately

— When the DNS returns a A response wait for a small
amount of time, and if the V6 connection has not
completed, then fire off a V4 connection attempt

e Use a reasonably aggressive wait timer on the DNS to TCP
gap
E.g. Chrome with 300ms failover timer
E.g. Safari + Mac OS X with RTT-derived timer
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How Should Browsers Behave?

— Fire off the A and AAAA DNS queries in parallel

7’\
— When the DNS returns an AAAA resn~- £ Q\DQ\\% '
connection attempt imm~ " A\M\)scd N

— When th~ "'.\ Q\Qo\%w‘.\).‘éjponse wait for a small
N \D\)X ST\E, and if the V6 connection has not
“© "o Thpleted, then fire off a V4 connection attempt
e Use a reasonably aggressive wait timer on the DNS to TCP
gap
E.g. Chrome with 300ms failover timer
E.g. Safari + Mac OS X with RTT-derived timer
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