DNS, DNSSEC and DDOS

G eolf \—\
F e::)qr\/ 2%%

The Evolution of Evil

« It used to be that they sent evil packets to their
chosen victim

but this exposed the attacker, and limited the damage they could cause

vJ/

ed. TCP NN atdack
AMoacker Vietw

L drdrdid ¢

The Evolution of Evil

« Then they enrolled a bot army to send evil

which kept the attacker hidden and increased the damage leverage

N _J @x
@@

V‘\C'\.\\N\
AMacker Massea URL redrieval

Experiences what
\ooks ke a
TCP YN attack!

The Evolution of Evil

« But now they co-opt the innocent to the
evil cause, and use un-corrupted servers to
launch the attack

which hides the attacker(s) and uses the normal operation of servers
to cause damage

UDP is a Fine Protocol

UDP is used whenever you want a fast and
highly efficient short transaction protocol

Send a query to a server (one packet)
And the server sends an answer (one packet)

UDP works best when the question and the
answer are small (<512 bytes), but can work
on larger transactions *

Although it’s not as reliable as TCP

K The fine print — you’ll need to magnify this to read it!
Some UDP applications use multiple UDP packets for large answers (e.g. NTP). Some rely of IP level fragmentation (e.g. DNS with EDNSO)
The problem with relying on fragmentation is firewall filtering and NATs (the trailing frags have no transport level header to assist in locating the NAT binding , as fragme
And the problem with multiple UDP packets is reliably reassembly is pushed into the application, which may not necessarily do this well!

UDP Mutation

« Unlike TCP there is no handshake between
the two parties who are communicating

« Send the server a UDP packet

« The server flips the source and destination IP
addresses and responds with a UDP packet

« The server never checks the authenticity of the
source address

« This allows a simply reflection attack...

UDP Reflection Attack

SG\“VQV‘
L Y Y
N _4
Proto: UDP Proto: UDP
Dest: Server Dest: Victim
| Source: Victim Source: Server Ve
ANacker '

Note the fake source!

UDP and DDOS Reflection Attacks

This works “best” for a UDP-based service when

The service is widely used
Servers are commonplace
Servers are poorly maintained (or unmaintained)

Clients are not “qualified” by the server (i.e.
anyone can pose a query to a server)

The answer is far bigger than the question

Hmmmmm

What could that be?

DNS as an attack vector

UDP-based query response service

UDP is now almost ubiquitous for the DNS — EDNSO wiped out the last
vestiges of TCP fallback

The service is widely used
Everybody is a client of the DNS
Servers are commonplace
Resolvers are scattered all over the Internet
Servers are poorly maintained (or unmaintained)
There are some 30 million open resolvers
Clients are not “qualified” by the server (i.e. anyone can pose a
guery to a server)
DNS servers are by design promiscuous
Many DNS resolvers are unintentionally promiscuous
The answer is far bigger than the question
Just ask the right DNS question!

DNS and DDOS

DNS DDOS attacks are now very commonplace
on today’s Internet

They can (and do) operate at sustained gigabit
speeds

They can use corrupted intermediaries to
broaden the attack surface and further
increase the query intensity

And efforts to mitigate at the server tend to
degrade the quality of the DNS service, as well
as affecting the victim

DNS Queries and Responses

dig A isc.org - query size = 36 bytes
149.20.64.69 — response size = 52 bytes

Conventional DNS queries and answers tend to be
relatively poor attack amplifiers — in general the
answer is not all that much larger than the question

But there are particular questions that generate
more impressive answers...

The DNS ANY query

dig ANY isc.org — query size = 36 bytes
response size = 3,587 bytes

That’s more like it! In this case the response is
100x larger than the query

Blocking the ANY attack

* Modify the resolver not to respond to ANY
qgueries in a meaningful way

$ dig ANY isc.org @8.8.8.8

; <<>> Di1G 9.8.3-P1 <<>> ANY 1isc.org @8.8.8.8
;5 global options: +cmd

:; GOt answer:
;; ->>HEADER<<- opcode: QUERY{ status: SERVFAIL, %Wd: 6696
;; flags: gr rd ra; QUERY: 1, ER: 0, AUTHORITY: 0O, ADDITIONAL: O

;> QUESTION SECTION:
;1scC.org. IN ANY

;3 Query time: 632 msec

-7 SERVER: 8.8.8.8#53(8.8.8.8)

;3 WHEN: Sun Feb 16 09:42:48 2014
:; MSG SIZE rcvd: 25

The DNSSEC query

With DNSSEC, if the client requests DNSSEC information,
then the additional records in the response contain
crypto values

These crypto records can be quite large...

dig +dnssec A isc.org — query = 36 bytes
149.20.64.69 — response = 1,619 bytes

That’s an additional 1,567 bytes of crypto payload that
has been provided by DNSSEC

Blocking DNSSEC DNS attacks

e Stop serving DNSSEC-signed zones

* And/or configure resolvers to turn off the
DNSSEC-OK EDNSO flag

But resolver-level query blocking defeats the entire
purpose of DNSSEC!

So we need to look to other measures to mitigate
this vulnerability

Possible responses

Drop “excessive” queries at the resolver
— collateral damage to the server and the served names

— can lead to cache poisoning attacks

Drop EDNSO and revert to original DNS behaviour
No DNS UDP responses over 512 bytes
Requestor directed to use TCP instead
— Poor DNS resolution performance for all clients
— Can lead to server overload though increased TCP
load

Maybe we can combine the two approaches

DNS Response Rate Limiting (RRL)

* Set a maximum rate that any requestor will be

told the same answer
note: this is not about the query — its about the response!

* Above this threshold either drop the query, or
respond with the query and the truncated bit
(TC) set ON

— The ratio of candidate queries to TC responses is

termed the “SLIP ratio”

e Some folk say SLIP=2 is enough
* Others seem to prefer SLIP=1

This will not eliminate the problem

As the attacker can broaden the attack plane across
a large set of open recursive resolvers and not
overload any single resolver to trigger its local RRL
response

— And there are some ~30M such open resolvers
http://openresolverproject.org

But it does increase the effort required to mount an
attack based on DNS reflection, due to the added
need to distribute the attack profile over a large set
of resolvers

Attackers tend to exert no more effort than is strictly necessary to achieve the desired outcome, so increasing
the effort needed to use the DNS to mount a reflection attack may well shift attention to other vulnerabilities,
such as NTP

What you need to be naughty

To Vo L—Q\ﬁx

<} of ofen
9004 sharnd gownt)

o sceidt thod sends & swaple OND

fen ceso\er, Wit LOP sovrce AAACCSD

0 G enerade o\ cosolvers (2wad, Cor
ewowle 1S A

O Wrede a Swadl
chrg o an ©
Q00N WY

O Ealis} o colleckion of coerciole wosts Yo dence

OO DNS QuUCCeS Qec seCcoNnd ACTOo

Lot of ofen ceso\WNers
‘ o S00Meps DLOS

caxe
$s YoV

sceawal

0O Lase, refeot and W\

What you need to be nice

JAdd RRL to your DNS resolvers
(dClean up open DNS resolvers in your networks

Limit queries on recursive resolvers to be sourced
from your client cone, if you can

But...

Being nice is not always possible

— There is a significant volume of embedded DNS
functionality in appliances and NAT-based
consumerware

— And enough of includes open DNS resolver
functionality to be a problem that is not going to
be “fixed” anytime soon

It’s not just the DNS

* NTP uses a UDP-based command and control
channel over the same port as the time
exchange (UDP port 123)

 And NTP servers are often installed with an
open config
* The NTP monlist command is 220 bytes to

send, and the response is a set of packets
with a total volume of 46,800 bytes

What you need to be nice

JAdd RRL to your DNS resolvers
(dClean up open DNS resolvers in your networks

Limit queries on recursive resolvers to come from
your client cone, if you can

JWhile you are at it, do the same filtering for
NTP, and the monlist command in particular

In the longer term...

e Commonly used protocols that can generate
large UDP responses are a long term problem

— And DNSSEC will not cram into a 512 byte payload
in the DNS
* So maybe it’s the ability to pass through IP
packets through the network with a false IP

source address that is the basic problem, and
just UDP exposes this problem to application
level behaviour

What you need to be nice

JAdd RRL to your DNS resolvers
(dClean up open DNS resolvers in your networks

Limit queries on recursive resolvers to come from
your client cone, if you can

JWhile you are at it do the same ﬁltermg for
NTP, and the monlist c icular

dPerform outbound traffic filtering to support
source address validation: BCP38

Some Useful Resources

Open DNS resolvers:

http://openresolverproject.org

DNS RRL description
http://www.redbarn.org/dns/ratelimits

Sealing up NTP — a template for ntp.conf
http://www.team-cymru.org/ReadingRoom/Templates/secure-ntp-template.html
Open NTP servers
http://openntpproject.org
BCP 38
http://bcp38.info

BCP 38 tracking
http://spoofer.cmand.org//

Thanks!

