Internet Area

IPv6 Multi-Addressing, Locators and Paths

Objective

 To facilitate an Internet Area discussion in the next 45 (or so) minutes on IPv6, Multi-Addressing and Path Maintenance approaches

Goals:

- □ Raise awareness of the concepts
- Summarize current activities
- □ Flag open issues
- □ Consider further activity

- Conventionally, IP addresses are
 - □ Endpoint identifiers
 - □ Routing objects
 - ☐ Key value for Forwarding Lookup (but you knew this already)

.

- Challenges to the IP Address Model
 - Mobility and nomadism
 - Multi-homed endpoints
 - Scoped address realms
 - Routing Complexity and Scaling
 - □ VOIP and Peer-to-Peer applications
 - NATs, ALGs, and firewalls
 - Unwanted traffic, session hijacking and disruption

百花齊放,百家爭鳴

*

- Our current direction appears to be developing solutions in diverse permutations of this split identity / locator space simultaneously:
 - ☐ Multi-Party Applications
 - □ Application Agents
 - □ Rendezvous protocols
 - □ DNS Incremental Updates and DNSSEC
 - DNS Indirection and Referral
 - SCTP, HIP at the transport-layer
 - Mobile IPv6
 - Mobile IPv4
 - Multi6
 - □ And probably many more!

^{*} Let a hundred flowers bloom: let a hundred schools of thought contend Mao Zedong, 1956

- Generic approach: <u>decouple</u> the semantics of identity and location:
 - Associate multiple locations to a single identity
- Consequent "binding state": mapping an identity into a viable locator
 - in a packet header for the sender
 - reverse mapping for the receiver
- Using the <u>IP layer</u> as the point where this binding state is maintained
- Once a binding state is established
 - □ transport and above uses identifiers
 - IP and below uses locators

м

- A number of current IETF activities are looking at aspects of decoupling identity and location at the IP layer:
 - ☐ IKEv2 + MOBIKE (+ BTNS)
 - □ MIP4 + MIP6 + combinations (MIPSHOP, MOBOPTS)
 - □ NEMO
 - □ SHIM6
 - □ HIP

Functional Components

- From a functional perspective, the approaches appear to have similar structural components:
 - □ <u>Discovery</u> of locator functionality between end-hosts
 - □ Identity / Locator mapping state <u>Setup</u>
 - State <u>Update</u> (locator set change)
 - □ Path <u>Maintenance</u>

We already have multiple **Discovery** and **Setup** protocols ...

- Different security assumptions behind each approach
 - □ IKEv2 (+MOBIKE), MIP6, SHIM6, HIP, ...
- Different functionality requirements
- Different domains of intended applicability
- There appears to be limited capacity and/or benefit in attempting to unify these approaches

Could we have a single locator / path Update and Maintenance module?

- Is it possible to use a single common locator update protocol as a plug-in to the signalling protocol?
- Is it possible to use a single common path property discovery / maintenance mechanism as a plug-in to the signalling protocol?

Issues – Transport Requirements

- Who cares about locator switch events (and why)?
- Various different transport session requirements:
 - □ TCP
 - avoid session resets
 - optimise path performance
 - UDP streamers
 - avoid stream disruption
 - Prefer rapid failover to pre-configured path
 - match path performance to media requirements
 - UDP transactions
 - avoid excessive transaction overhead

Issues - Locator / Path Maintenance

- Path integrity monitoring: Upper Level Signalling vs IP Level Monitoring
 - □ Indirect: Use Transport Session referred signals
 - Transport session timeout generates a locator switch signal
 - Locator pair testing?
 - Interpretation of signals? (Firewalls and filters for specific transport ports?)
 - □ Direct: Use pseudo-transport session
 - Probe and response within the shim layer
 - □ Complete pair-wise locator maintenance
 - On failure locator testing

Issues - Identity Equivalences

- Locator State Maintenance
 - □ What is an identity state equivalence set?
 - Per Host pair

For some generic form of associating multiple IDs with a single endpoint

- Per ID pair
 - The ID pair forms a unique lookup key to the mapping state
- Per session class
 - The ID pair plus a session "type" value forms the state lookup key
- Per transport session
 - The ID Pair plus the session identifier forms the state lookup key
- □ What is required to identify an incoming packet in terms of selecting the correct mapping state?

Issues - Path Maintenance

- Passive: await locator switch signal and then select a "new" pair and test
 - ☐ Maintain timed cache of 'bad' pairs
 - Test new candidate locator pair
 - Testing may generate n**2 probes
 - Testing of new pairs requires extended timeouts
 - Parallel vs serial test procedures
- Active: Actively maintain and probe all locator pairs asynchronously
 - □ Rapid failover high overhead
- Active ++ : maintain path characteristics per locator pair
 - □ Path matching failover options higher overhead

ĸ.

So - is it possible...

- To construct the identifier / locator mapping module in such a way that it can be modular?
- That the signals in / out of the module can be defined in a functionally complete manner?
- That the module can support multiple setup and signalling protocols?
 - Sharing the mechanisms and probe information but
 - □ Probably not sharing the (complete) state
- That the module's internal operation can be opaque to the calling interface?