

Analysing Dual Stack Behaviour
and IPv6 Quality

Geoff Huston & George Michaelson
APNIC

What does a browser do in a dual stack
environment?
Is this behaviour better – or worse – than
comparable behaviour in a IPv4-ony world?

Dual Stack Behaviour: V1.0

IPv6 First:
 Unconditional preference for IPv6 over IPv4

Dual Stack Behaviour: V1.0

IPv6 First:
 Unconditional preference for IPv6 over IPv4

If the local client has an active IPv6 interface then:

–  Perform two DNS queries: A and AAAA record queries
–  Wait for both to complete
–  If the AAAA query succeeds then initiate the browser connection

using IPv6
–  If there is no AAAA record then initiate the browser connection using

IPv4

Dual Stack Failure: V1.0
What if the IPv6 connection attempt does not elicit a response?

 Then you fall back to use IPv4

How long will you wait before decide that this has failed and you
need fall back?

 As long as it takes for the Operating System’s TCP system to fail
 - Windows: 3 SYN packets, 19 seconds
 - Mac OS X 6.8 and earlier: 11 SYN packets, 75 seconds
 - Linux: >= 11 SYN packets, between 75 to 180 seconds

Obviously, this sucks!

Dual Stack Behaviour: V2.0

Native IPv6 First:
 Unconditional preference for native IPv6 over IPv4

Add Local Preference Rules:

1.  unicast IPv6
2.  unicast IPv4
3.  6to4 tunneled IPv6
4.  Teredo IPv6

The effect of this preference table is that if the local IPv6 interface
is an auto-tunneled interface than it will only be used when there is
no local unicast IPv6 interface and the remote site is IPv6-only

Dual Stack Failure: V2.0
What if the IPv6 SYN does not elicit a response?

 Then you fall back to IPv4

How long will you wait before you fall back?

 As long as it takes for the Operating System’s TCP system to fail
 Windows: 3 SYN packets, 19 seconds
 Mac OS X 6.8 and earlier: 11 SYN packets, 75 seconds
 Linux: >= 11 SYN packets, between 75 to 180 seconds

i.e. no change – this still sucks.

If you are behind a broken V6 connection, your life is still abject misery!

Dual Stack Behaviour: V2.5
Windows Vista and 7
While Vista and 7 has IPv6 “on” by default, if the system is
behind a NAT the IPv6 interface is a auto-configured as a
Teredo auto-tunnel interface

The modified behaviour is that these systems will not even
query the DNS for a AAAA record if the only local IPv6
interface is a Teredo interface

–  i.e. the Teredo interface is only used when there is no precursor DNS
lookup (e.g. use of IPv6 address literal form of URL)

Dual Stack Behaviour: V2.5
Native IPv6 First:
 Unconditional preference for native IPv6 over IPv4

 (and avoid Teredo)

Add Local Preference Rules:

1.  unicast IPv6
2.  unicast IPv4
3.  6to4 tunneled IPv6
4.  Teredo IPv6

The effect of this is that if the Windows box is behind a NAT and
does not have a unicast V6 connection then it shows IPv4-only
behaviours

All this is broken!
•  When the network sucks, this form of browser behaviour

makes it suck even more!

•  These serialized approaches to dual stack connectivity
really don’t work well when there is a connection failure.

•  The technique used to identify a failure falls back to a
timeout – and this can be frustrating to the user if a default
OS-provided timeout is used

We need better failures!

We need better failures!

•  Altering the local preference rules may alter the chances of
encountering a failure, but does not alter the poor method
of determining when you have failed

The fine print: The real problem here is that the assumption behind the TCP connection code in most
operating systems was that there was no fallback – you either connected to a given address or you
report failure. To provide a behaviour that was robust under adverse network conditions the OS
connection code is incredibly persistent (up to 3 minutes In the case of Linux default). But to use this
same code in the circumstance where you have alternate connection possibilities is just testing the
user’s patience. So we need to rethink this and use a connection strategy that tests all possibilities in
a far shorter elapsed time.

Start with one horse

How to conduct a two horse race...

Start with one horse

If it dies on the way
then send off the other
horse!

How to conduct a two horse race...

You can send off both horses at once
and go with whichever is fastest...

How to conduct a two horse race...

Or...

Dual Stack Behaviour: V3.0
Safari and Mac OSX 10.7 and later
Moderately Happy Eyeballs:
•  Determine the preference between IPv4 and IPv6 by

maintaining a running performance metric of per-protocol
average RTT to each cached destination address

•  When DNS queries return both A and AAAA records initiate
a connection using the protocol with the lowest current
average RTT

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later
•  If the connection is not established within the RTT estimate

time interval then fire off a connection attempt in the other
protocol

–  i.e. use a very aggressive timeout to trigger protocol fallback

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later
•  If the connection is not established within the RTT estimate

time interval then fire off a connection attempt in the other
protocol

–  i.e. use a very aggressive timeout to trigger protocol fallback

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later
•  If the connection is not established within the RTT

estimate time interval then fire off a connection
attempt in the other protocol

Only when you have tried ALL the addresses in the first protocol
family, then flip over to the other protocol

Dual Stack Failure: V3.0
Safari and Mac OSX 10.7 and later
•  If the connection is not established within the RTT

estimate time interval then fire off a connection
attempt in the other protocol

•  Only when you have tried ALL the addresses in the
first protocol family, then flip over to the other
protocol

Multi-a
ddressi

ng a c
ritical

service
 point

in dual

stack s
ituation

s can m
ake it

look w
orse to

clients,
 not be

tter!

Dual Stack Behaviour: V3.1
Chrome Browser
Happyish Eyeballs:
•  Fire off the A and AAAA DNS queries in parallel
•  It’s a DNS race: Initiate a TCP connection with the

first DNS response
•  If the TCP connection fails to complete in 300ms

then start up a second connection on the other
protocol

Yes, 300ms is arbitrary. But assuming that a fast DNS response
equates to a fast data path RTT is equally arbitrary!

Dual Stack Behaviour: V3.2
Firefox and Fast Failover
Happier Eyeballs:

•  Fire off the A and AAAA DNS Queries

•  Initiate a TCP connection as soon as the DNS response is
received

•  It’s a SYN race: Use the first connection to complete the
SYN-ACK handshake for data retrieval

•  Close off the other connection

This makes a little more sense – now the data path RTT
has some influence over protocol selection, and the user
connection will proceed with the protocol that completes
the connection in the least time

Firefox Firefox(
fast,fail

Chrome Opera Safari Explorer

MAC(OS(X 8.0.1 8.0.116.9.912.41 11.52 5.1.1
10.7.2 75s 0ms 300ms 75s 270ms

IPv6 SYN+ACK DNS IPv6 RTT
Windows(7 8.0.1 8.0.115.0.874.121 11.52 5.1.1 9.0.8112

21s 0ms 300ms 21s 21s 21s
IPv6 SYN+ACK DNS IPv6 IPv6 IPv6

Windows(XP 8.0.1 8.0.115.0.874.121 11.52 5.1.1 9.0.8112
21s 0ms 300ms 21ds 21s 21s
IPv6 SYN+ACK DNS IPv6 IPv6 IPv6

Linux 8.0.1 8.0.1 11.60<bets
2.6.40,3.0 96s 0ms 189s

IPv6 SYN+ACK IPv6
iOS ?
5.0.1 720ms

RTT

The bigger picture...

http://www.potaroo.net/ispcol/2011-12/esotropia.html

Failover Timer Values

Protocol Preference Setting

The bigger picture...

http://www.potaroo.net/ispcol/2011-12/esotropia.html

Firefox Firefox(
fast,fail

Chrome Opera Safari Explorer

MAC(OS(X 8.0.1 8.0.116.9.912.41 11.52 5.1.1
10.7.2 75s 0ms 300ms 75s 270ms

IPv6 SYN+ACK DNS IPv6 RTT
Windows(7 8.0.1 8.0.115.0.874.121 11.52 5.1.1 9.0.8112

21s 0ms 300ms 21s 21s 21s
IPv6 SYN+ACK DNS IPv6 IPv6 IPv6

Windows(XP 8.0.1 8.0.115.0.874.121 11.52 5.1.1 9.0.8112
21s 0ms 300ms 21ds 21s 21s
IPv6 SYN+ACK DNS IPv6 IPv6 IPv6

Linux 8.0.1 8.0.1 11.60<bets
2.6.40,3.0 96s 0ms 189s

IPv6 SYN+ACK IPv6
iOS ?
5.0.1 720ms

RTT

Why?

•  Why add all this parallel complexity to browser behaviour?

•  What was wrong with the initial concept of “prefer IPv6 if
you can, use IPv4 otherwise”?

•  Is there really any difference in performance between IPv6
connections?

•  Lets see...

Measuring Dual Stack Quality

Enlist a large set of dual stack clients to connect to an
instrumented server using both IPv4 and IPv6

–  Equip a number of web sites with a javascript module that poses a
number of image-blot retrieval tests

–  Extended this using Flash to embed the same tests in a Google
Image Ad*

•  Thank you to Google, ISOC
 RIPE NCC & ISC for
 assistance in conducting
 this experiment!

Web Scripts

Embedding
tests in Ad

s

Test Volume – Number of unique tests performed per day

Measuring Dual Stack Quality

Enlist a large set of dual stack clients to connect to an
instrumented server using both IPv4 and IPv6

–  For each successful connection couplet gather the pair of RTT
measurements on the SYN-ACK exchanges

–  Gather connection failure statistics (where a “failure” is defined as a
received SYN, but no followup ACK)

Outbound SYN

Busted SYN ACK
Return path

Connection Failure

Measuring Failure

Measuring Failure

Why is this
failure rate

 for V6

so incredibl
y high?

Measuring Failure

What are these v4
failure spikes?

What is going on with IPv4?

What is going on with IPv4?

The failure rate for V4 decreases as the volume of
experiments increases – which implies that the
number of “naked SYNs” being sent to the servers is
not related to the number of tests being performed.

Aside from residual IPv4 failures in the image fetch
due to device resets, connection dropouts, etc, the
bulk of the recorded failures here is probably
attributable to bots doing address scanning on port 80

What is going on with IPv4?

Syn Flood Attacks

bot scanning on port 80?

What about IPv6?
Local Miredo Relay Failures

Why is the base failure rate
of all IPv6 connections sitting
at 30% - 40%?

This is amazingly bad!

V6 Failure Rate by Address Type

All V6 Average
Teredo

6 to 4

Unicast

Teredo Failures

•  Teredo connections use a 2-step connection process:
–  An ICMP exchange to establish the form of local NAT behaviour (full

cone, port restricted cone, ...) and to set up the symmetric path
–  A TCP 3-way handshake

•  There are 2 failure modes:
–  ICMP seen, no SYN
–  ICMP seen, SYN seen, no ACK

Teredo Failure Rate

ICMP Exchange fails to complete

ICMP completed, but SYN Exchange fails to complete

It’s NAT Traversal Failure

•  Teredo failure is around 35% of all connection attempts
–  Obviously, this is unacceptably high!
–  This is unlikely to be local filtering effects given that Teredo presents

to the local NAT as conventional IPv4 UDP packets
–  More likely is the failure of the Teredo protocol to correctly identify the

behaviour mode of the local NAT device

Working with Failure

A 35% connection failure is unworkable is almost all
circumstances

But one particular application can thrive in this environment,
and makes use of Teredo addresses - torrents

–  Not many DPI interceptors are sensitive to V6 in V4 UDP encap
–  The massive redundancy of the data set across multiple sources

reduces the sensitivity of individual session failures

6to4 Auto-tunnelling

6to4 Auto-tunnelling technique
–  Cannot operate through IPv4 NATs
–  Relies on third party relays in BOTH directions
–  Asymmetric traffic paths

–  Some of the performance problems can be mitigated by placing the
reverse 6to4 relay into the V6 service point

6to4 Failure Rate

ASIA

US

EU

6to4 Failure is Local Failure

6to4 failure appears to be related to two factors:
1.  The client’s site has a protocol 41 firewall filter rule for incoming

traffic (this is possibly more prevalent in AsiaPac than in Europe)
2.  Load / delay / reliability issues in the server’s chosen outbound

6to4 relay (noted in the data gathered at the US server)

Even so, the 10% to 20% connection failure rate for 6to4 is
unacceptably high!

V6 Unicast Failures
January – August2012:

962,737 successful V6 connecting endpoints
22,923 failures

 That’s a connection failure rate of 2.3%!

13 clients used fe80:: link local addresses
139 clients used fc00:/7 ULA source addresses
22 clients used fec0::/16 deprecated site local addresses
16 clients used 1f02:d9fc::/16
1 client used 1f01:7e87:12:10ca::/64
1 client used a 3ffe::/16 address
7 clients used :: IPv4 –mapped addresses (10/8, 192.168/16)
7 clients used ::ffff:<IPv4>-mapped addresses

What about the other 22,717 clients?

Unicast IPv6 Failures

38 were using unallocated unicast V6 addresses

150 were using unadvertised unicast V6 addresses

22,529 were using V6 addresses drawn from conventional
advertised V6 prefixes!

Local inbound filters appear to be a common problem in IPv6

Where does V6 Fail?

Highest:
Pakistan - 35%
Hong Kong - 18%
Canada - 12%
Vietnam – 12%
Romania – 10%
Indonesia – 10%
Taiwan – 10%
Malaysia – 7%
New Zealand – 7%

Lowest:
France – 0.3%
UK – 0.3%
Germany – 0.9%
Norway – 0.9%
Australia – 0.9%
Japan - 1%
Greece – 1%
 Italy – 1%
Finland – 1%

Average - 2.3% of unicast V6 connections fail to complete
However, we saw wide variance across countries:

The “Good” IPv6 AS’s
AS V6 connection AS Description
 Failure Rate
AS38083 0.0% AU CURTIN-UNI-AS-AP Curtin University
AS24226 0.1% NZ CATALYST-IT-AS-AP Catalyst IT
AS1312 0.1% US VA-TECH-AS - Virginia Polytechnic Institute and State Univ.
AS12552 0.1% SE IPO-EU IP-Only Telecommunication Networks AB
AS31334 0.1% DE KABELDEUTSCHLAND-AS Kabel Deutschland Vertrieb und Service GmbH
AS237 0.1% US MERIT-AS-14 - Merit Network Inc.
AS55 0.2% US UPENN-CIS - University of Pennsylvania
AS17727 0.2% ID NAPINFO-AS-AP PT. NAP Info Lintas Nusa
AS21453 0.2% RU FLEX-AS Flex Ltd
AS2516 0.2% JP KDDI KDDI CORPORATION
AS6661 0.2% LU EPT-LU Entreprise des P. et T. Luxembourg
AS2107 0.2% SI ARNES-NET ARNES
AS12322 0.2% FR PROXAD Free SAS
AS3676 0.2% US UIOWA-AS - University of Iowa
AS4802 0.3% AU ASN-IINET iiNet Limited
AS39326 0.3% GB GOSCOMB-AS Goscomb Technologies Limited
AS53347 0.3% US PREMIER-COMMUNICATIONS - Premier Communications
AS3333 0.3% NL RIPE-NCC-AS Reseaux IP Europeens Network Coordination Centre (RIPE NCC)
AS22394 0.3% US CELLCO - Cellco Partnership DBA Verizon Wireless
AS19782 0.3% US INDIANAGIGAPOP - Indiana University
AS5661 0.3% US USF - UNIVERSITY OF SOUTH FLORIDA
AS4608 0.3% AU APNIC-AP Asia Pacific Network Information Centre
AS3582 0.3% US UONET - University of Oregon
AS22548 0.3% BR Comite Gestor da Internet no Brasil
AS8426 0.3% ES CLARANET-AS ClaraNET LTD
AS2852 0.4% CZ CESNET2 CESNET, z.s.p.o.
AS57 0.4% US UMN-REI-UC - University of Minnesota
AS7018 0.4% US ATT-INTERNET4 - AT&T Services, Inc.
AS1103 0.4% NL SURFNET-NL SURFnet, The Netherlands
AS55391 0.5% JP MF-NATIVE6-E INTERNET MULTIFEED CO.

The “Not So Good” IPv6 AS’s
AS V6 connection AS Description
 Failure Rate
AS29113 12.5% CZ SLOANE-AS UPC Ceska Republica, s.r.o.
AS1659 12.6% TW ERX-TANET-ASN1 Tiawan Academic Network (TANet) Information Center
AS45230 12.6% NZ UBERGROUP-AS-NZ UberGroup Limited
AS18119 12.8% NZ ACSDATA-NZ ACSData
AS17451 13.6% ID BIZNET-AS-AP BIZNET ISP
AS24173 13.8% VN NETNAM-AS-AP Netnam Company
AS12271 15.1% US SCRR-12271 - Road Runner HoldCo LLC
AS17709 16.8% TW EBT Eastern Broadband Telecom Co.,Ltd
AS11427 18.4% US SCRR-11427 - Road Runner HoldCo LLC
AS2907 18.4% JP SINET-AS Research Organization of Information and Systems, National Institute of Informatics
AS8591 19.2% SI AMIS AMiS
AS812 19.6% CA ROGERS-CABLE - Rogers Cable Communications Inc.
AS12046 19.8% MT ASN-CSC-UOM University of Malta
AS3356 20.2% US LEVEL3 Level 3 Communications
AS4725 20.9% JP ODN SOFTBANK TELECOM Corp.
AS8970 21.6% PL WASK WROCMAN-EDU educational part of WASK network, Wroclaw, Poland
AS17579 21.6% KR KREONET2-AS-KR Korea Institute of Science and Technology Information
AS7539 22.3% TW TANET2-TW TANet2, sponsored by NSC, TAIWAN
AS3262 22.9% ES SARENET SAREnet, Spain
AS11537 25.3% US ABILENE - Internet2
AS16880 32.5% US TRENDMICRO Global IDC and Backbone of Trend Micro Inc.
AS9431 33.2% NZ AKUNI-NZ The University of Auckland
AS4528 33.6% HK HKU-AS-HK The University of Hong Kong
AS45809 34.7% NZ NZRS-AS-AP ASN for .nz registry content
AS2576 42.0% US DOT-AS - U. S. Department of Transportation
AS17996 42.3% ID UIINET-ID-AP PT Global Prima Utama
AS3562 45.5% PK SNLL-NET-AS - Sandia National Laboratories
AS24514 58.6% MY MYREN-MY Malaysian Research & Education Network

Measuring Dual Stack Quality

•  For each successful connection couplet
gather the pair of RTT measurements on the
SYN-ACK exchanges

•  Use the server’s web logs to associate a couplet
of IPv4 and IPv6 addresses

•  Use the packet dumps to collect RTT information
from the SYN-ACK Exchange

IPv6 is slower IPv6 is faster

RTT Difference (in fractions of a second)

N
um

be
r
of
 s
am

ple
s
(lo

g
sc
ale

)

Teredo 6 to 4
Unicast

This is unexpected!

Europe-located Server

Why is Teredo slower?

The technique used here is to measure the interval between
the first received SYN and the first received ACK

–  But something is happening with Teredo
•  we use inbuilt Teredo Relays, so the Teredo RTT should precisely match the IPv4

RTT

–  But we are measuring the initial SYN exchange
–  It appears that there are some major setup delays in Teredo

that are occurring in the initial SYN ACK exchange
–  The performance of CPE based NATs has a massive tail of

delay, woe and abject misery!

This is unexpected!

Europe-located Server

Why is V6 faster in some cases?

•  We see some sessions that have faster V6 RTTs than their
paired IPv4 counterpart
–  Because IPv6 is faster?

•  This is possible – there are some strange IPv4 paths out there
•  But why would a Teredo SYN exchange be faster than a native IPv4 SYN

exchange?

–  Becuase IPv4 is slower?
•  Is this related to the behaviour characteristics of some CPE based NATs and their

handling of NAT bindings during a a SYN exchange?

Australia-located Server

Huh?

Huh?

Huh?

Australia-located Server

Huh?

•  The server’s V6 routing transit is not always optimal
•  And nor is V4 transit optimal in some cases
•  There are 6to4 delay peaks at 40ms and 150ms
•  And the long tail of Teredo slowness

Huh?

Huh?

US-located Server
Remote outbound
6to4 relay

Use of local outbound
6to4 relay has
reduced this skew

US-located Server

Observations

Is IPv6 as fast as IPv4?
If you are native in IPv6, then, yes!
The use of tunnels and overlays can make this worse in some cases,
but, in general, V6 is as fast as V4

Observations

Is IPv6 as robust as IPv4?
Sadly, on average, No
The base failure rate of V6 connection attempts at ~2% of the total V6
unicast traffic volume is simply unacceptable as a service platform
But its not in the core network. It appears that this is mainly self-
inflicted with local edge firewall filter settings that trap V6 packets
But relative robustness is highly variable – some ASes have IPv6 at
the same level of robustness as IPv4, while others do no.

How Should Browsers Behave?

One view is to place both protocols on equal footing in a parallel
connection environment, using a “SYN-ACK race” with parallel
DNS and TCP session establishment

–  E.g. Firefox with fast retransmit

Or reduce the server load by using a “DNS race” and take
whichever answers first, but prepare for failover using a very
aggressive timeout

–  E.g. Chrome with 300ms failover timer

Or use local heuristics to estimate which is faster and failover within
1 RTT interval

–  E.g. Safari + Mac OS X >= 10.7

How Should Browsers Behave?

One view is to place both protocols on equal footing in a parallel
connection environment, using a “SYN-ACK race” with parallel
DNS and TCP session establishment

–  E.g. Firefox with fast retransmit

Or reduce the server load by using a “DNS race” and take
whichever answers first, but prepare for failover using a very
aggressive timeout

–  E.g. Chrome with 300ms failover timer

Or use local heuristics to estimate which is faster and failover within
1 RTT interval

–  E.g. Safari + Mac OS X >= 10.7

None of
these a

re that
 bad –

they ar
e all ve

ry

fast. T
he trad

e off i
s slight

ly high
er num

ber of

connect
ions wi

th the
server

against
 speed

and

robustn
ess of

the ses
sion

But it’s still not enough!

Many access providers see their immediate future as
having to
deploy IPv6 across their infrastructure, and at the same
time field CGNs

But how big does the CGN need to be?

Generically, the CGN needs to be as big as the residual
preference for using IPv4 in dual stack scenarios

So how can we help this story along?

How Should Browsers Behave?

–  Fire off the DNS queries in parallel
–  If the DNS returns AAAA and A records, fire off a V6 connection

attempt first
–  Use a reasonably aggressive fallback timer to trigger V4 connection

 E.g. Chrome with 300ms failover timer
 E.g. Safari + Mac OS X with RTT-derived timer

How Should Browsers Behave?

–  Fire off the DNS queries in parallel
–  If the DNS returns AAAA and A records, fire off a V6 connection

attempt first
–  Use a reasonably aggressive fallback timer

 E.g. Chrome with 300ms failover timer
 E.g. Safari + Mac OS X with RTT-derived timer

“Biased, bu
t still Pl

easantly
Amused Eye

balls”!

Thank You

Questions?

labs

