
Security	and	Stuff
Geoff	Huston

APNIC

What I’m working on at the moment..

Why is this important?

• Rolling	the	value	of	the	Key	Signing	key	of	the	DNS	
is	perhaps	one	of	the	more	esoteric	aspects	of	the	
management	of	Internet	infrastructure
• So	why	should	you	care	that	this	is	done	well?
• And	what’s	the	problem	if	it	all	goes	wrong?

Lets take a step back

Security on the Internet

How	do	you	know	that	you	are	going	to	where	you	
thought	you	were	going	to?

Connection Steps

Client:

DNS	Query:
www.commbank.com.au?

DNS	Response

104.97.235.12
TCP	Session:

TCP	Connect	104.97.235.12,	port	443	

Hang on…

$ dig -x 104.97.235.12 +short
a104-97-235-12.deploy.static.akamaitechnologies.com.

That’s	not	an	IP	addresses	 that	was	allocated	to	the	Commonwealth	Bank.
The	Commonwealth	Bank	of	Australia	has	140.168.0.0	- 140.168.255.255	
and	203.17.185.0	- 203.17.185.255

So why should my browser	trust	that 104.97.235.12	is really the “proper”	
web	site	for	the Commonwealth	Bank	of Australia	and not some	dastardly
evil scam?

How	can my browser	tell the difference between an intended truth and a	
lie?

Domain Name Certification

• The	Commonwealth	 Bank	of	Australia	has	generated	 a	
key	pair
• And	they	passed	a	certificate	 signing	request	to	a	
company	called	“Verisign”
• Who	is	willing	to	vouch	(in	a	certificate)	 that	the	entity	
who	goes	by	the	domain	name	of		
www.commbank.com.au has	a	certain	public	key	value
• So	if	I	can	associate	this	public	key	with	a	connection	
then	I	have	a	high	degree	of	confidence	 that	I’ve	
connected	 to	www.commbank.com.au,	 as	long	as	I	am	
prepared	 to	trust	Versign and	the	certificates	 that	they	
issue

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

Local Trust

The cert I’m being
asked to trust was
issued by a certification
authority that my
browser already trusts –
so I trust that cert!

Local Trust

That’s	a	big	list	of	people	to	
Trust

Are	they	all	trustable?

Local Trust

That’s	a	big	list	of	people	to	
Trust

Are	they	all	trustable?

Local Trust

That’s	a	big	list	of	people	to	
Trust

Are	they	all	trustable?

With unpleasant consequences
when it all goes wrong

With unpleasant consequences
when it all goes wrong

International Herald Tribune
Sep 13, 2011 Front Page

With unpleasant consequences
when it all goes wrong

International Herald Tribune
Sep 13, 2011 Front Page

What’s going wrong
here?
• The	TLS	handshake	cannot	specify	WHICH	CA	
should	be	used	to	validate	the	digital	certificate
• Your	browser	will	allow	ANY	CA	to	be	used	to	
validate	a	certificate

What’s going wrong
here?
• The	TLS	handshake	cannot	specify	WHICH	CA	
should	be	used	to	validate	the	digital	certificate
• Your	browser	will	allow	ANY	CA	to	be	used	to	
validate	a	certificate

What’s going wrong
here?
• The	TLS	handshake	cannot	specify	WHICH	CA	
should	be	used	to	validate	the	digital	certificate
• Your	browser	will	allow	ANY	CA	to	be	used	to	
validate	a	certificateHere’s a lock – it might be the

lock on your front door for all I
know.

It might LOOK secure, but don’t
worry – literally ANY key can
open it!

What’s going wrong
here?
• There	is	no	incentive	for	quality	in	the	CA	
marketplace
• Why	pay	more	for	any	certificate	when	the	entire	
CA	structure	is	only	as	strong	as	the	weakest	CA
• And	you	browser	trusts	a	LOT	of	CAs!

• About	60	– 100	CA’s
• About	1,500	Subordinate	RA’s
• Operated	by	650	different	organisations

See the EFF SSL observatory
http://www.eff.org/files/DefconSSLiverse.pdf

In a commercial environment

Where	CA’s	compete	with	each	other	for	market	
share
And	quality	offers	no	protection
Than	what	‘wins’	in	the	market?

Where now?

Option	A:		Take	all	the	money	out	of	the	system!

Where now?

Option	A:		Take	all	the	money	out	of	the	system!

Where now?

Option	B:		White	Listing	and	Pinning	with	HSTS

https://code.google.com/p/chromium/codesearch#c
hromium/src/net/http/transport_security_state_stat
ic.json

Where now?

Option	B:		White	Listing	and	Pinning	with	HSTS

https://code.google.com/p/chromium/codesearch#c
hromium/src/net/http/transport_security_state_stat
ic.json

Where now?

Option	C:		Use	the	DNS!

cafepress.com/nxdomain

Seriously

Where	better	to	find	out	the	public	key	associated	
with	a	DNS	name	than	to	look	it	up	in	the	DNS?

Seriously

Where	better	to	find	out	the	public	key	associated	
with	a	DNS	name	than	to	look	it	up	in	the	DNS?

• Why	not	query	the	DNS	for	the	HSTS	record	(pinning	
record)?

Seriously

Where	better	to	find	out	the	public	key	associated	
with	a	DNS	name	than	to	look	it	up	in	the	DNS?

• Why	not	query	the	DNS	for	the	HSTS	record?
• Why	not	query	the	DNS	for	the	issuer	CA?

Seriously

Where	better	to	find	out	the	public	key	associated	
with	a	DNS	name	than	to	look	it	up	in	the	DNS?

• Why	not	query	the	DNS	for	the	HSTS	record?
• Why	not	query	the	DNS	for	the	issuer	CA?
• Why	not	query	the	DNS	for	the	hash	of	the	domain	
name	cert?

Seriously

Where	better	to	find	out	the	public	key	associated	
with	a	DNS	name	than	to	look	it	up	in	the	DNS?

• Why	not	query	the	DNS	for	the	HSTS	record?
• Why	not	query	the	DNS	for	the	issuer	CA?
• Why	not	query	the	DNS	for	the	hash	of	the	domain	
name	cert?

• Why	not	query	the	DNS	for	the	domain	name	public	key	
cert	as	a	simple	self-signed	cert?	

Seriously

Where	better	to	find	out	the	public	key	associated	
with	a	DNS	name	than	to	look	it	up	in	the	DNS?

• Why	not	query	the	DNS	for	the	HSTS	record?
• Why	not	query	the	DNS	for	the	issuer	CA?
• Why	not	query	the	DNS	for	the	hash	of	the	domain	
name	cert?

• Why	not	query	the	DNS	for	the	domain	name	public	key	
cert	as	a	simple	self-signed	cert?	

DANE

• Using	the	DNS	to	associated	domain	name	public	
key	certificates	with	domain	name

DANE

TLS with DANE

• Client	receives	server	cert	in	Server	Hello
• Client	lookups	the	DNS	for	the	TLSA	Resource	Record	of	
the	domain	name

• Client	validates	the	presented	certificate	against	the	
TLSA	RR

• Client	performs	Client	Key	exchange

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

DNS Name

TLSA query

Just one problem…

• The	DNS	is	full	of	liars	and	lies!
• And	this	can	compromise	the	integrity	of	public	key	
information	embedded	in	the	DNS
• Unless	we	fix	the	DNS	we	are	no	better	off	than	
before!

• We	need	to	allow	users	to	validate	DNS	responses	
for	themselves
• And	for	this	we	need	a	Secure	DNS	framework
• Which	we	have	– and	its	called	DNSSEC

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com
Is the signature for this record valid?

Is the ZSK for example.com valid?

Is the KSK for example.com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for .com valid?

Is the KSK for .com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for . valid?

Is the KSK for . valid?

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com
Is the signature for this record valid?

Is the ZSK for example.com valid?

Is the KSK for example.com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for .com valid?

Is the KSK for .com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for . valid?

Is the KSK for . valid?

As long as you have a valid
local trust anchor for the
root zone then you can
validate a signed DNS
response by constructing
this backward path to the
local root trust anchor

Do we do DNSSEC
Validation?

Do we do DNSSEC
Validation?
• Surprisingly,	there	is	a	lot	of	it	out	there!

stats.labs.apnic.net/dnssec

Optus has been running
it for 2 years!

So we’re done – right?

• Um	– well,	if	we’re	not	done,	we’re	well	on	the	way!

So we’re done – right?

• Um	– well,	if	we’re	not	done,	we’re	well	on	the	way!

But:
• We	need	to	improve	the	use	of	DNSSEC	validation	in	
resolvers

• We	need	to	load	DNSSEC	 validation	as	a	library	for	
applications	to	use	directly

• And	we	need	to	improve	our	day-to-day	operational	
practices	in	managing	DNSSEC

• And	hopefully	that	will	clear	the	path	for	the	widespread	
adoption	of	DANE

• Because	we	have	no	other	way	to	nail	down	the	CA	pinning	
problem	in	a	reliable	and	secure	manner

Operational Practices?

• Key	Management
• Registration	of	the	DS	record	in	the	parent	zone
• Regular	Key	rotation

Rolling Keys

Rolling	a	ZSK	for	a	zone:
(the	issue	here	is	that	you	need	to	be	aware	that	resolvers	will	
cache	data,	so	any	sudden	move	may	isolate	you	from	the	net!)

• Add	the	new	ZSK	to	the	DNSKEY	RRset for	the	zone
(and	sign	across	it	with	the	KSK)

• Pause	for	breath	(or	at	least	a	TTL)
• Remove	the	zone’s	old	RRsigs (signed	by	the	outgoing	
ZSK)	and	replace	them	with	RRsigs signed	by	the	new	
ZSK

• Pause	for	another	breath
• Remove	the	old	ZSK	from	the	DNSKEY	RRset

RFC6781

Rolling Keys

Rolling	a	KSK	for	a	zone:
• Add	the	new	KSK	to	the	DNSKEY	RRset for	the	zone

(and	sign	across	it	with	both	the	old	and	new	KSKs)
• Pause	for	breath	(or	at	least	a	TTL)
• Replace	the	parent’s	DS	record	for	this	zone	with	the	DS	
record	for	the	new	KSK

• Pause	for	another	breath	(TTL)
• Remove	the	old	KSK	(and	its	RRSIG)	from	the	DNSKEY	
RRset

RFC6781

But What about the Root
Keys?
• The	Root	Key	ZSK	is	just	like	any	other	ZSK

• it’s	rolled	every	three	months
• And	nobody	appears	to	have	a	problem	with	this!	

But What about the Root
Keys?
• The	Root	Zone	KSK	is	different

Why is the Root Zone KSK
different?
• The	KSK	Public	Key	is	used	as	the	DNSSEC	Validation	
trust	anchor
• This	key	is	the	root	of	all	trust	in	the	DNSSEC	framework
• It	is	distributed	everywhere	 as	“configuration	data”
• Most	of	the	time	the	KSK	itself	is	kept	offline in	highly	
secure	facilities

But What about the Root
Keys?
• The	Root	Zone	KSK	is	different
• There	is	no	“parent	authority”
• And	there	is	no	real	way	to	disseminate	a	new	KSK	
other	than	using	the	DNS	itself
• So	rolling	the	KSK	means	that	we	have	to	use	an	
“old	signs	new”	approach	to	transitive	trust
(RFC	5011)

• And	there	is	no	Plan	B	here!

Five Years Ago…

The Eastern KSK
Repository

The Western KSK
Repository

El	Segundo,	California	*

The Ultra Secret Third KSK
Repository in Amsterdam

Five Years Ago…

Rolling the KSK?

• All	DNS	resolvers	that	perform	validation	of	DNS	
responses	use	a	local	copy	of	the	KSK
• They	will	need	to	load	a	new	KSK	public	key	and	
replace	the	existing	trust	anchor	with	this	new	
value	at	the	appropriate	time
• This	key	roll	could	have	a	public	impact,	particularly	
if	DNSSEC-validating	resolvers	do	not	load	the	new	
KSK
• These	resolvers	will	go	dark	and	will	not	resolve	signed	
responses

Easy, Right?

• Publish	a	new	KSK	and	include	it	in	DNSKEY	
responses
• Use	the	new	KSK	to	sign	the	ZSK,	as	well	as	the	old	
KSK	signature
• Resolvers	use	old-signs-over-new	to	pick	up	the	new	
KSK,	validate	it	using	the	old	KSK,	and	replace	the	local	
trust	anchor	material	with	the	new	KSK

• Withdraw	the	old	signature	signed	via	the	old	KSK
• Revoke	the	old	KSK

The RFC5011 Approach

The RFC5011 Approach

Just Like Last Time?

But that was then…

And	this	is	now:
• Resolvers	are	now	not	so	aggressive	in	searching	for	

alternate	validation	paths	when	validation	fails
(as	long	as	resolvers	keep	their	code	up	to	date,	which	everyone	does	
– right?)

• And	now	we	all support	RFC5011	key	roll	processes
• And	everyone can	cope	with	large	DNS	responses
So	all	this	will	go	without	a	hitch
Nobody	will	even	notice	the	KSK	roll	at	the	root

But that was then…

And	this	is	now:
• Resolvers	are	now	not	so	aggressive	in	searching	for	

alternate	validation	paths	when	validation	fails
(as	long	as	resolvers	keep	their	code	up	to	date,	which	everyone	does	
– right?)

• And	now	we	all support	RFC5011	key	roll	processes
• And	everyone can	cope	with	large	DNS	responses
So	all	this	will	go	without	a	hitch
Nobody	will	even	notice	the	KSK	roll	at	the	root

What we all should be
concerned about…
That	resolvers	who	validate	DNS	responses	will	fail	to	
pick	up	the	new	DNS	root	key	automatically

• i.e.	they	do	not	have	code	that	follows	RFC5011	
procedures	for	the	introduction	of	a	new	KSK

The	resolvers	will	be	unable	to	receive	the	larger	DNS	
responses	that	will	occur	during	the	dual	signature	
phase	of	the	rollover	

Technical Concerns
• Some	DNSSEC	validating	resolvers	do	not	support	
RFC5011
• How	many	resolvers	may	be	affected	in	this	way?
• How	many	users	may	be	affected?
• What	will	the	resolvers	do	when	validation	fails?

• Will	they	perform	lookup	‘thrashing’	
• What	will	users	do	when	resolvers	return	SERVFAIL?

• How	many	users	will	redirect	 their	query	to	a	non-validating	
resolver

Technical Concerns
• Some	DNSSEC	validating	resolvers	do	not	support	
RFC5011
• How	many	resolvers	may	be	affected	in	this	way?
• How	many	users	may	be	affected?
• What	will	the	resolvers	do	when	validation	fails?

• Will	they	perform	lookup	‘thrashing’	
• What	will	users	do	when	resolvers	return	SERVFAIL?

• How	many	users	will	redirect	 their	query	to	a	non-validating	
resolver

Some Observations - 1

There	is	a	LOT	of	DNSSEC	validation	out	there!
• 87%	of	all	queries	have	DNSSEC-OK	 set
• 30%	of	all	DNSSEC-OK	queries	attempt	to	validate	the	
response

• 25%	of	end	users	are	using	DNS	resolvers	that	will	
validate	what	they	are	told

• 12%	of	end	users	don’t	believe	bad	validation	news	and	
turn	to	other	non-validating	resolvers	when	validation	
fails.

Some Observations - 2

ECDSA	is	viable	– sort	of
• 1	in	5	clients	who	use	resolvers	that	validate	RSA-signed	
responses	are	unable	to	validate	the	same	response	
when	signed	using	ECDSA

• But	they	fail	to	“unsigned”	rather	than	“invalid”	so	it’s	a	
(sort	of)	safe	fail

Some Observations - 3

The	larger	DNS	responses	will	probably	work,	but	not	for	
everyone

• The	“fall	back	to	TCP”	will	rise	to	6%	of	queries	when	the	response	
size	get	to	around	1,350	octets

• But	around	16%	of	visible	resolvers	appear	not	to	use	TCP	at	all
• So	the	DNS	failure	rate	appears	to	rise	by	around	1	- 2	%	of	end	
users

BUT	.org	currently	runs	at	1,650	octets	and	nobody	is	screaming	
failure

• So	it	will	probably	work

Some Observations - 4

We	can’t	measure	automated	key	take	up
• We	can’t	see	how	many	resolvers	fail	to	use	RFC5011	
notices	to	pick	up	the	new	KSK	as	a	Truct Anchor	in	
advance

• We	will	only	see	it	via	failure	on	key	roll

Where are we?

• A	key	roll	of	the	Root	Zone	KSK	will	cause	some	
resolvers	to	fail:
• Resolvers	who	do	not	pick	up	the	new	key	 in	the	manner	
described	by	RFC5011	

• Resolvers	who	cannot	receive	a	DNS	response	of	~1,300	
octets

• Many	users	who	use	these	failing	resolvers	will	just	
switch	over	to	use	a	non-validating	resolver
• A	small	pool	of	users	will	be	affected	with	no	DNS

What can I do?
Check	your	recursive	resolver	config!

7
7

Good Dog!

// recursive resolver configuration - Bind

…

managed-keys {

. initial-key 257 3 5 "AwEAAfdqNV

JMRMzrppU1WnNW0PWrGn4x9dPg

…

=„; };

7
8

Bad Dog!

// recursive resolver configuration - Bind

…

trusted-keys {

. 257 3 5 "AwEAAfdqNV

JMRMzrppU1WnNW0PWrGn4x9dPg

…

=„; };

7
9

Thanks!

