
Why Dane?

Geoff Huston
Chief Scientist, APNIC

Which Bank? My Bank!

I	hope!

Security on the Internet

How	do	you	know	that	you	are	going	to	where	
you	thought	you	were	going	to?

Security on the Internet

How	do	you	know	that	you	are	going	to	where	
you	thought	you	were	going	to?

Security on the Internet

Also,	how	can	you	keep	your	session	a	secret	
from	wire(less)	snoopers?

Security on the Internet

Also,	how	can	you	keep	your	session	a	secret	
from	wire(less)	snoopers?

Opening the Connection:

First Steps

Client:
DNS	Query:

www.commbank.com.au?
DNS	Response:
104.97.235.12

TCP	Session:
TCP	Connect	104.97.235.12,	port	443	

Hang on…

$ dig -x 104.97.235.12 +short
a104-97-235-12.deploy.static.akamaitechnologies.com.

That’s	not an	IP	addresses	that	was	allocated	to	the	Commonwealth	Bank!

The	Commonwealth	Bank	of	Australia	has	140.168.0.0	- 140.168.255.255	
and	203.17.185.0	- 203.17.185.255

So why should my browser	trust	that 104.97.235.12	is really the “proper”	web	
site	for	the Commonwealth	Bank	of Australia,	and not some	dastardly evil
scam designed to	steal my passwords and my money?

How	can my browser	tell the difference between an intended truth and a	lie?

Its all about cryptography

The Basic Challenge

Pick	a	pair	of	keys	such	that:
– Messages	encoded	with	
one	key	can	only	be	
decoded	with	the	other	
key

– Knowledge	of	the	value	of	
one	key	does	not	infer	the	
value	of	the	other	key

The Power of Primes

(me)d ≡	m (mod n)

As	long	as	d and	n are	relatively	large,	and	n is	
the	product	of	two	large	prime	numbers,	then	
finding	the	value	of	d when	you	already	know	
the	values	of	e and	n is	computationally	
expensive

Why is this important?

Because much of the
foundation of Internet
Security rests upon this
prime number relationship

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

Domain Name Certification

• The	Commonwealth	Bank	of	Australia	has	generated	a	key	
pair

• And	they	passed	a	certificate	signing	request	to	a	company	
called	“Symantec”

• Who	is	willing	to	vouch	(in	a	certificate)	that	the	entity	who	
goes	by	the	domain	name	of		www.commbank.com.au also	
has	a	certain	public	key	value

• So	if	I	can	associate	this	public	key	with	a	connection	then	I	
have	a	high	degree	of	confidence	that	I’ve	connected	to	
www.commbank.com.au,	as	long	as	I	am	prepared	to	trust	
Symantec	and	the	certificates	that	they	issue

Domain Name Certification

• The	Commonwealth	Bank	of	Australia	has	generated	a	key	
pair

• And	they	passed	a	certificate	signing	request	to	a	company	
called	“Symantec”

• Who	is	willing	to	vouch	(in	a	certificate)	that	the	entity	who	
goes	by	the	domain	name	of		www.commbank.com.au also	
has	a	certain	public	key	value

• So	if	I	can	associate	this	public	key	with	a	connection	then	I	
have	a	high	degree	of	confidence	that	I’ve	connected	to	
www.commbank.com.au,	as	long	as	I	am	prepared	to	trust	
Symantec	and	the	certificates	that	they	issue

Local Trust

The cert I’m being
asked to trust was
issued by a certification
authority that my
browser already trusts –
so I trust that cert!

Local Trust or Local

Credulity*?

That’s	a	big	list	of	people	to	
Trust

Are	they	all	trustable?

*

Local Credulity

That’s	a	big	list	of	people	to	
Trust

Are	they	all	trustable?

Local Credulity

That’s	a	big	list	of	people	to	
Trust

Are	they	all	trustable?

But my bank used Symantec

as	their	Certificate	Authority

And	Symantec	NEVER	lie	in	the	certificates	they	
issue

Never?

Well, hardly ever

http://arstechnica.com/security/2017/01
/already-on-probation-symantec-issues-
more-illegit-https-certificates/

With unpleasant consequences

when it all goes wrong

With unpleasant consequences

when it all goes wrong

International Herald Tribune
Sep 13, 2011 Front Page

What’s going wrong here?

• The	TLS	handshake	cannot	specify	WHICH	CA	
should	be	used	to	validate	the	digital	
certificate

• Your	browser	will	allow	ANY	CA	to	be	used	to	
validate	a	certificate

What’s going wrong here?

• The	TLS	handshake	cannot	specify	WHICH	CA	
should	be	used	to	validate	the	digital	
certificate

• Your	browser	will	allow	ANY	CA	to	be	used	to	
validate	a	certificate

What’s going wrong here?

• The	TLS	handshake	cannot	specify	WHICH	CA	
should	be	used	to	validate	the	digital	
certificate

• Your	browser	will	allow	ANY	CA	to	be	used	to	
validate	a	certificate

Here’s a lock – it might be the
lock on your front door for all I
know.

The lock might LOOK secure,
but don’t worry – literally ANY
key can open it!

What’s going wrong here?

• There	is	no	incentive	for	quality	in	the	CA	
marketplace

• Why	pay	more	for	any	certificate	when	the	
entire	CA	structure	is	only	as	strong	as	the	
weakest	CA

• And	you	browser	trusts	a	LOT	of	CAs!
– About	60	– 100	CA’s
– About	1,500	Subordinate	RA’s
– Operated	by	650	different	organisations

See the EFF SSL observatory
http://www.eff.org/files/DefconSSLiverse.pdf

In a commercial environment

Where	CA’s	compete	with	each	other	for	market	
share
And	quality	offers	no	protection
Than	what	‘wins’	in	the	market?

?

In a commercial environment

Where	CA’s	compete	with	each	other	for	market	
share
And	quality	offers	no	protection
Than	what	‘wins’	in	the	market?

Where now?

Option	A:		Take	all	the	money	out	of	the	system!

Where now?

Option	A:		Take	all	the	money	out	of	the	system!

Where now?

Option	B:		White	Listing	and	Pinning	with	HSTS

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/
transport_security_state_static.json

Where now?

Option	B:		White	Listing	and	Pinning	with	HSTS

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/
transport_security_state_static.json

Where now?

Option	C:		Use	the	DNS!

www.cafepress.com/nxdomain

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?
–Why	not	query	the	DNS	for	the	HSTS	record	
(pinning	record)?

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?
–Why	not	query	the	DNS	for	the	HSTS	record?
–Why	not	query	the	DNS	for	the	issuer	CA?

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?
–Why	not	query	the	DNS	for	the	HSTS	record?
–Why	not	query	the	DNS	for	the	issuer	CA?
–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	cert?

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?
–Why	not	query	the	DNS	for	the	HSTS	record?
–Why	not	query	the	DNS	for	the	issuer	CA?
–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	cert?

–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	public	key?	

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?
–Why	not	query	the	DNS	for	the	HSTS	record?
–Why	not	query	the	DNS	for	the	issuer	CA?
–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	cert?

–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	public	key?	

Seriously

Where	better	to	find	out	the	public	key	
associated	with	a	DNS-named	service	than	to	
look	it	up	in	the	DNS?
–Why	not	query	the	DNS	for	the	HSTS	record?
–Why	not	query	the	DNS	for	the	issuer	CA?
–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	cert?

–Why	not	query	the	DNS	for	the	hash	of	the	
domain	name	public	key?	

DANE

• Using	the	DNS	to	associated	domain	name	
public	key	certificates	with	domain	name

DANE

• Using	the	DNS	to	associated	domain	name	
public	key	certificates	with	domain	name

DANE

EECert TLSA record generation

; Convert the public key certificate to DER format
; Generate the SHA256 hash
; Add DNS gunk!

$ /usr/bin/openssl x509 -in /usr/local/etc/letsencrypt/live/www.dotnxdomain.net/cert.pem -outform DER |
/usr/bin/openssl sha256 |
cut -d ' ' -f 2 |
awk '{print ”_443._tcp.www.dotnxdomain.net IN TLSA 3 0 1 " $1}'

_443._tcp.www.dotnxdomain.net. 899 IN TLSA 3 0 1 D42101BCCE941D22E8E467C5D75E77EC4A7B8B7C9366C6A878CB4E15 7E602F17

$ dig +dnssec TLSA _443._tcp.www.dotnxdomain.net.

_443._tcp.www.dotnxdomain.net. 899 IN TLSA 3 0 1 D42101BCCE941D22E8E467C5D75E77EC4A7B8B7C9366C6A878CB4E15 7E602F17
_443._tcp.www.dotnxdomain.net. 899 IN RRSIG TLSA 13 5 900 20200724235900 20170122043100 56797 www.dotnxdomain.net.
dUYD1sMIpBc6RsUhturFzz5G8qX6oaDGRzaD/q6n+YJi2kqzDfWZls6F 3X1mXdpeQQYz52yOUOcdWvFRO9TQZQ==

SPKI TLSA record generation

; Generate the public key
; Convert it to DER format
; Generate the SHA256 hash
; Add DNS gunk!

$ /usr/bin/openssl x509 -in /usr/local/etc/letsencrypt/live/www.dotnxdomain.net/cert.pem -pubkey -noout |
openssl rsa -pubin -outform der |
/usr/bin/openssl sha256 |
cut -d ' ' -f 2 |
awk '{ print "_443._tcp.www.ndotnxdomain.net IN TLSA 3 1 1 " $1}’

_443._tcp.www.ndotnxdomain.net IN TLSA 3 1 1 df3a810d998cfddf8fa935ed33065ee27a67747366e2da40ddefef2b3a2032eb

TLS with DANE

• Client	receives	server	cert	in	Server	Hello
– Client	lookups	the	DNS	for	the	TLSA	Resource	
Record	of	the	domain	name

– Client	validates	the	presented	certificate	against	
the	TLSA	RR

• Client	performs	Client	Key	exchange

TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

DNS Name

TLSA query

Just one problem…

• The	DNS	is	full	of	liars	and	lies!
• And	this	can	compromise	the	integrity	of	
public	key	information	embedded	in	the	DNS

• Unless	we	fix	the	DNS	we	are	no	better	off	
than	before with	these	TLSA	records!

Just one response…

• We	need	to	allow	users	to	validate	DNS	
responses	for	themselves

• And	for	this	we	need	a	Secure	DNS	framework
• Which	we	have	– and	its	called	DNSSEC!

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com
Is the signature for this record valid?

Is the ZSK for example.com valid?

Is the KSK for example.com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for .com valid?

Is the KSK for .com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for . valid?

Is the KSK for . valid?

DNSSEC Interlocking Signatures

.	(root)

.com

.example.com

www.example.com IN	A	192.0.1

.	Key-Signing	Key	– signs	over

.	Zone-Signing	Key	– signs	over

DS	for	.com	(Key-Signing	Key)

.com	Key-Signing	Key	– signs	over

.com	Zone-Signing	Key	– signs	over

DS	for	example	.com	(Key-Signing	Key)

example.com Key-Signing	Key	– signs	over

example.com Zone-Signing	Key	– signs	over

www.example.com
Is the signature for this record valid?

Is the ZSK for example.com valid?

Is the KSK for example.com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for .com valid?

Is the KSK for .com valid?

Is this DS equal to the hash of the KSK?
Is the signature for this record valid?

Is the ZSK for . valid?

Is the KSK for . valid?

As long as you have a valid
local trust anchor for the
root zone then you can
validate a signed DNS
response by constructing
this backward path to the
local root trust anchor

DANE + DNSSEC

• Query	the	DNS	for	the	TLSA	record	of	the	
domain	name	and	ask	for	the	DNSSEC	
signature	to	be	included	in	the	response

• Validate	the	signature	to	ensure	that	you	have	
an	unbroken	signature	chain	to	the	root	trust	
point

• At	this	point	you	can	accept	the	TLSA	record	
as	the	authentic	record,	and	set	up	a	TLS	
session	based	on	this	data

DANE Does DNS

via a Browser Extension

So we need DNSSEC as well

as DANE…

How	much	DNSSEC	Validation	is	out	there?

Do we do DNSSEC

Validation?

stats.labs.apnic.net/dnssec/XA

Do we do DNSSEC

Validation?

stats.labs.apnic.net/dnssec/XA

0% 95%

Do we do DNSSEC

Validation?

stats.labs.apnic.net/dnssec/XA

0% 95%

Where now?

Browser	vendors	appear	to	be	
dragging	the	chain	on	DANE	
support

DANE	exists	today	as	plug-ins	
rather	than	a	core	functionality	

Cynically,	one	could	observe	
that	fast	but	insecure	is	the	
browser	vendors’	current	
preference!

Or…

Look - No DNS!

• Server	packages	server	cert,	TLSA	record	and	
the	DNSSEC	credential	chain	in	a	single	bundle

• Client	receives	bundle	in	Server	Hello
– Client	performs	validation	of	TLSA	Resource	
Record	using	the	supplied	DNSEC	signatures	plus	
the	local	DNS	Root	Trust	Anchor	without	
performing	any	DNS	queries

– Client	validates	the	presented	certificate	against	
the	TLSA	RR

• Client	performs	Client	Key	exchange

Faster DANE with Stapling

Mozilla	Bug	Report	672600

Where now?

We	could	do	a	far better	job	at	Internet	Security:
Publishing	DNSSEC-signed	zones
Publishing	DANE	TLSA	records
Using	DNSSEC-validating	resolution
Using	TLSA	records	to	guide	TLS	Key	Exchange	

What	this	can	offer	is	robust,	affordable,	accessible	
security	without	the	current	overheads	of	high	
priced	vanity	CA	offerings

Let’s Do it!

What	Let’s	Encrypt	and	DNSSEC	offers	is	robust,	affordable,	accessible	
security	without	the	current	overheads	of	high	priced	vanity	CA	offerings

That’s it!

