RSA and ECDSA

G eofl Husion
APN\C

#apricot2017 £ APRICOT2017 APNIC 43 ik

It's all about Cryptography

importa

Key Distbution

Omghice]
g0

#apricot2017 ;:E: APRICOT2017 APNIC 43

Why use Cryptography?

Public key cryptography can be used in a number of ways:
— protecting a session from third party eavesdroppers

Encryption using a session key that is known only to the parties to the conversation

— protecting a session from interference

Injection (or removal) of part of a session can only be undertaken by the parties to the
session

— authentication and non-repudiation
What is received is exactly what the other party sent, and cannot be repudiated

papricot2017 £ APRICOT2017 APNIC 43 Y

symmetric Crypto

A symmetric crypto algorithm uses the same key to
— Convert a plaintext message to a crypted message
— Convert a crypted message to its plaintext message

* They are generally fast and simple

BUT they use a shared key

— This key distribution problem can be a critical weakness in the crypto
framework

papricot2017 £ APRICOT2017 APNIC 43 ¥

Asymmetric Crypto

This is a class of asymmetric transforms applied to a message such that:

Messages encrypted using Key A and algorithm X can only be translated back to the
original message using Key B and algorithm X

This also holds in reverse
This can address the shared key problem:

If | publish Key A and keep Key B a secret then you can send me a secret by
encrypting it using my public key A

papricot2017 £ APRICOT2017 APNIC 43 ¥

The Asymmetric Crypto Challenge

Devise an algorithm (encoding) and
keys such that:

— Messages encoded with one key can
only be decoded with the other key

— Knowledge of the value of one key does
not infer the value of the other key

N S5 APRICOT2017 APNIC 43 Y

RSA

Select two large (> 256 bit) prime numbers, p and g, then:

n=p.q
@(n) = (p-1).(q-1) (the number of numbers that are relatively prime to n)
Pick an e that is relatively prime to {Q(n)

The PUBLIC KEY is <e,n>

Pick a value for d such that d.e =1 mod @(n)
The PRIVATE KEY is <d,n>

For any x, x% =x (mod n)

papricot2017 £ APRICOT2017 APNIC 43 ¥

#apricot2017

Why does RSA work?

Encryption using the public key consists of taking a message x and
raising it to the power e

Crypt = x¢

Decryption consists of taking an encrypted message and raising it
to the power d, mod n

Decrypt = Crypt? mod n = (x¢)¥ mod n = x¢ mod n = x

Similarly, one can encrypt a message with the private key (x?) and
decrypt with the public key ((x?) ¢ mod n = x)

S5 APRICOT2017 APNIC 43 Y

Why does RSA work?

If you know e and n (the public key) then how can you calculate d (the
private key)?

Now d.e = 1 mod O (n)
If you know @ (n) you can calculate d
But O (n) = (p-1).(g-1), where p.g=n

i.e. you need to find the prime factors of n, a large composite number that
is the product of two primes

papricot2017 S5 APRICOT2017 APNIC 43 Y

The 'core' of RSA

(x¢)¥ =x mod n

As long as d and n are relatively large, and n is
the product of two large prime numbers, then
finding the value of d when you already know
the values of e and n is computationally
expensive

#apricot2017 Fal:!E APRICOT2017 APNIC 43

The 'core' of RSA

(Xe)d =x mod n

As long as d and n are relatively large, and n is
the product of two large prime numbers, then
finding the value of d when you already know
the values of e and n is computationally
expensive

- S
es 9ed larger and Caster whot \ia

b ot ossible Yoworrowt

oleasle ‘765‘\6(‘&0\7 way e

#apricot2017 Fa:E! APRICOT2017 APNIC 43

#apricot2017

The 'core' of RSA

(Xe)d =x mod n

As long as d and n are relatively large, and n is
the

product of two large prime numbers, then
finding the value of d when you already know
the values of e and n is computationally
expensive

- S
es 9ed larger and Caster whot \ia

b ot ossible Yoworrowt

oleasle 7&5‘\'6(‘&0\7 way e

s Yo wake Me valve o n
\

Twe way o shay anead
larger and larger

=z APRICOT2017 APNIC 43

Why is this important?

B ecause wiuch of e foundation of
whernet Qecurdy resds ugon dwis
celationship

A |

‘7 '\\ /\

#apricot2017 JEAPRICOT2017 APNIC 43 Yl

How big can RSA go?

In theory we can push this to very large sizes of n to generate RSA
private keys

The algorithm is not itself arbitrarily limited in terms of key size

But as the numbers get larger there is higher computation overhead to
generate and manipulate these keys

So we want it large enough not to be ‘broken’ by most forms of brute
force, but small enough to be computed by our everyday processors

S5 APRICOT2017 APNIC 43 Y

#apricot2017

How big should RSA go?

You need to consider time as well

How long do you want or need your secret to remain a secret?
Because if the attacker has enough time a brute force attack may work

Also time is on the attacker’s side: keys that are considered robust today may not
be as robust tomorrow, assuming that feasible compute capabilities rise over time

So you want to pick a key size that is resistant to attempts to brute force the
key both today and tomorrow

papricot2017 £ APRICOT2017 APNIC 43 ¥

Bigger and bigger?

Well, no — the larger the key sizes compared to compute
capabilities means:

— Longer times to generate keys

— Longer times to encrypt (and decrypt) messages

— More space to represent the key values

So you need to use big keys, but no bigger then necessary!

papricot2017 £ APRICOT2017 APNIC 43 ¥

Be Specifiec!

Time to consult the experts!

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

NIST Special Publication 800-57 Part 3
Revision 1
Table 2-1: Recommended Algorithms and Key Sizes

Key Type Algorithms and Key Sizes

Recommendation for N
igital Signature keys used @
Key Management for authentication ECDSA (Curve P-256)

(for Users or Devices)

Part 3: Application-Specific Key Digital Signature keys used CRSA (2048 bits) ?
. Or non-repudiation A "
Management Guidance (for Users or Devices) ECDSA (Curves P-256 or P-384)

CA and OCSP Responder RSA (2048 or 3072bits)
Signing Keys ECDSA (Curves P-2Z56 or P-384)
Kev Establish . RSA (2048 bits)

ey Establishment keys DiffieHe bits)

(for Users or Devices)
ECDH (Curves P-256 or P-384)

Elaine Barker
Quynh Dang

This publication is available free of charge from:

#apricot2017 http://dx.doi.org/10.6028/NTIST.SP.800-57pt3r1 {aé APRICOT 2017 APN IC 43

RSA is everywherse..

#apricot2017 “ZAPRICOT2017 APNIC 43 e

My Bank..(I hope!)

o ® < @ A A ® = k of A werm Commbank COM AU

Vodatone says itV eunch NB-0T netwark in EU e NANCG 68 | Noruh American Network O fhchy images of keys - Google Search Personal WoLding accounts, Credit Ca +

/ Banking Home buying Investing Super & retiring Q D, ® & Logon

#apricot2017 Far:!E APRICOT2017 APNIC 43

#apricot2017

TLS

Protecting the

TLS Client

TLS Server

session

ClientHello

Offers TLS version, list of ciphers, compression
methods etc

ServerHello

Server chooses TLS version, cipher, compression
method. Server sends its certificate

ServerHelloDone
ClientikeyExchange D

Secret PreMasterKey encrypted using Server's
public key

ChangeCipherSpec

Finished D

Server decrypts
message using
previously
exchanged keys

Client decrypts
message using ChangeCipherSpec
previously 4

exchanged keys Finished

=z APRICOT2017 APNIC 43

https://rhsecurity.wordpress.com/tag

The Key to My Bank

@ Commonwealth Bank of Australia www.commbank.com.au [
tetworkinEUe.. | NANOG 68 Agenda | North American Network O.. | fickr images of keys - Google Search Personal banking
~ safari s using d tion to
§ < Encryptionwitha digital certificate keeps information private as it's sent to or from the https website
Te bl E ° ‘www.commbank.com.au.

Symantec Corporation h:
SYDNEY, New South Wales, AU.

as being owned Bank of Australia in

[verisign Class 3 Public Primary Certification Authority - G5
- [Z] symantec Class 3 EV SSL CA - 63

www.commbank.com.au
Issued by: Symantec Class 3 EV SSL CA - 63

Expires: Monday, 27 February 2017 at 12:59:59 am Central European Standard Time
@ This certificate is valid

Yes, the fine print says oy
bone i using o 2072\ RSA
Pusle ey Yo as the foundation
of Fhe session ey used Yo

> Trust
v Details

Inc. Country AU
Business Category Private Organization
Serial Number 123 123124
Country
Postal Code 2000
State/Province New South Wales
Locality SYDNEY
Street Address 201 SUSSEX ST
Organization Commonwealth Bank of Australia
Organizational Unit CBA Business System Hosting

z

Common Name wiw.commbank.com.au

Country U

Organization Symantec Corporation
Organizational Unit Symantec Trust Network
Common Name Symantec Class 3 EV SSL CA - 63

Parameters none

Not Valid Before Wednesday, 10 February 2016 at 1:00:00 am Central European Standard Time.
Not Valid After Monday, 27 February 2017 at 12:59'59 am Central European Standard Time

Algorithm

RSA Encryption (1.2.840.113549.1.1.1)
Parameters none
Public Key 256 bytes ; C2 94 82 5C DE €5 3F 7E .
Exponent 65537

Key Size 2048 bits
Key Usage Encrypt, Verify, Wrap, Derive.

scount

Signature 266 bytes ; 93 F9 BE 80 C1 67 83 F5 ..

ards ? Hide Certificate

annhy

#apricot2017 Far:E: APRICOT2017 APNIC 43

#apricot2017

I trust its my bank because ..

The server has demonstrated knowledge of a private key that
is associated with a public key that | have been provided

The public key has been associated with a particular domain
name by a Certificate Authority

My browser trusts that this Certificate Authority never lies
about such associations

So if the server can demonstrate that it has the private key
then my browser will believe that its my bank!

S5 APRICOT2017 APNIC 43 Y [

DNSSEC and the DNS

Another major application for crypto in the Internet is securing
the DNS

You want to be assured that the response you get to from DNS
guery is:

— Authentic

— Complete

— Current

#apricot2017 £ APRICOT2017 APNIC 43 ¥ i

#apricot2017

DNSSEC Interlocking

. (root)
. Key-Signing Key — signs over
. Zone-Signing Key — signs over
DS for .com (Key-Signing Key)
.com

.com Key-Signing Key — signs over
.com Zone-Signing Key — signs over

DS for example .com (Key-Signing Key)

.example.com

example.com Key-Signing Key — signs over
example.com Zone-Signing Key — signs over

www.example.com

www.example.com

oignatures

sz APRICOT 2017

APNIC 43

#apricot2017

DNSSEC Interlocking

. (root)

. Key-Signing Key — signs over
. Zone-Signing Key — signs over

DS for .com (Key-Signing Key)

.com Key-Signing Key — signs over
.com Zone-Signing Key — signs over

DS for example .com (Key-Signing Key)

.example.com

example.com Key-Signing Key — signs over
example.com Zone-Signing Key — signs over

www.example.com

www.example.com IN A 192.0.1

oignatures

sz APRICOT 2017

APNIC 43

DNSSEC Interlocking Signatures

Vs dwe KK Cor . valia?
. (root)

‘s e Z9K (or . valia?

. Key-Signing Key — signs over

. Zone-Signing Key — signs over

s dwis DY equal do dne hash of e KIK?

DS for .com (Key-Signing Key) \s dne SQ#\OA\)\"G Cor s record valia?

s e KK Cor com valia?

.com Key-Signing Key — signs over

.com Zone-Signing Key — signs over ‘s e Z9K Cor com valia?

DS for example .com (Key-Signing Key)
s dwis DY equal do dne hash of tne KSK?
s e si@nature for s recora valia?

.example.com

o , s e KK for examplecowm valia?
example.com Key-Signing Key — signs over

example.com Zone-Signing Key — signg over s e Z9K Qor c*qwxe\e.cow\ valia?
www.example.com

s dne signature for dwis record valia?
www.example.com IN A 192.0.1

#apricot2017 Far:E: APRICOT2017 APNIC 43

#apricot2017

DNSSEC Interlocking Signatures

Vs dwe KK Cor . valia?

. (root) M

As long as YoV whave o valid
local drust anchor (or e o e wan of e KSK2
root 20ne then you can

« validate a signea DN or o vaba?
resfonse by constructing com vaba!
s backwiard foath do dne g of de KSKE

‘oxample. \ocal root drust anchor

s Ane o 1o examplecom valia?

example.com Key-Signing Key — signs over
example.com Zone-Signing Key — signg over s e Z9K Cor Q‘&O\\N\Q\G.CO\M valia?

. Cor . valia?

www.example.com
s dne signature for dwis record valia?

www.example.com IN A 192.0.1

£ APRICOT2017 APNIC 43 Y

#apricot2017

A DNSSEC response using RSA

$ dig +dnssec u5221730329.51425859199.175075.vcf100.5a593.z.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.51425859199.15075.vcf100.5a593.z.dotnxdomain.net
;5 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25461

;5 flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1
;3 OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;3 QUESTION SECTION:
;u5221730329.51425859199.15075.vcf100.5a593.z.dothnxdomain.net. IN A

;5 ANSWER SECTION:
u5221730329.51425859199.175075.vcf100.5a593.z.dotnxdomain.net. 1 IN A 199.102.79.186
u5221730329.51425859199.15075.vcf100.5a593.z.dotnxdomain.net. 1 IN RRSIG A 5 4 3600 20200724235900 20130729104013 1968 5a593.z.dotnxdomain.net. ghHPoQd7laztsdH823ew

;5 AUTHORITY SECTION:
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.al2ec545.6183d935.c68cebfb.41a4008e.4f291b87.479c6f9%e.5€a48186.7d1187f1.7572d59
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3a564678.16395067.al2ec545.6183d935.c68cebfb.41a4008e.4f291b87.479c6f9%e.5€a48186.7d1187f1.7572d59
5a593.z.dotnxdomain.net. 3599 IN NS nszl.z.dotnxdomain.net.

5a593.z.dotnxdomain.net. 3600 IN RRSIG NS 5 4 3600 20200724235900 20130729104013 1968 5a593.z.dotnxdomain.net. ntxwo5UwL1vQjOHY0z5DCVNDDScnd3Tg1gdOPsBRRhk3B91

;5 Query time: 1052 msec

ii SERVER: 127.0.0.1#53(127.0.0.1)
== WHEN: Thu Mar :59:57 UTC 2015
;3 MSG SIZE rcvd: 937

RSA signed response — 937 octets

=z APRICOT2017 APNIC 43

#apricot2017

Another DNSSEC response using RSA

$ dig +dnssec DNSKEY org

; <<>> DiG 9.11.0-P1 <<>> +dnssec DNSKEY org

;» global options: +cmd
7 Got answer:

;» ->>HEADER<<- opcode: QUERY,

;5 flags: qr rd ra; QUERY:

;5 OPT PSEUDOSECTION:

; EDNS: version: 0, flags:
;5 QUESTION SECTION:

;org.

;5 ANSWER SECTION:

org. 900
org. 900
org. 900
org. 900
org. 900
org. 900
org. 900

;» Query time: 475 msec

1,

do;

IN

IN
IN
IN
IN
IN
IN
IN

status: NOERROR, id: 53713
ANSWER: 7, AUTHORITY: ©, ADDITIONAL: 1

udp: 4096

DNSKEY

DNSKEY
DNSKEY
DNSKEY
DNSKEY
RRSIG
RRSIG
RRSIG

;5 SERVER: 203.133.248.1#53(203.133.248.1)
;3 WHENMs=Thu Jan 7:38 UTC 2017

;5 MSGN\SIZE rcvd: 1625

RSA signed response — 1,625 octets

256 3 7 AWEAAXxsSMmN/JgpEE9Y4uFNRJm7Q9GBwWmEYUCsCxuK1gBU9WrQEFRrvA eMamUBeX4SE
256 3 7 AwEAAayiVbuM+ehlsKsuAL1CI3mA+5JM7ti3VeY8ysmogE1VMuSLNsX7 HFyq906qghzZV
257 3 7 AWEAACMnWBKLuvG/LwnPVykcmpvnntwxfshH1IHRh1YOF30z8AMcuF8gw 9McCw+BoC2Y
257 3 7 AWEAAZTjbIOSkIpxWUtyXc8avsKyHIIZ+LjC2Dv8na0+Tz6X2fqzDC1lb dq7H1Zwtkac
DNSKEY 7 1 900 20170207153219 20170117143219 3947 org. S6+vpFWz6hfPmvI7zxRa4
DNSKEY 7 1 900 20170207153219 20170117143219 9795 org. iEyiroy021jtH5hf5RIdf
DNSKEY 7 1 900 20170207153219 20170117143219 17883 org. A2hLUswcas+W4h8gZYpA

=z APRICOT2017 APNIC 43

Not every application can tolerate

large keys..

The DNS and DNSSEC is a problem here:

including the digital signature increases the response size
Large responses generate packet fragmentation
Fragments are commonly filtered by firewalls

IPv6 Fragments required IPv6 Extension Headers, and
packets with Extension Headers are commonly filtered
DNS over TCP imposes server load

DNS over TCP is commonly filtered

If you can avoid large responses in the DNS, you should!

#apricot2017

S£ APRICOT2017 APNIC 43

The search for small keys

 Large keys and the DNS don’t mix very well:

— We try and make UDP fragmentation work reliably (for once!)
— Or we switch the DNS to use TCP
— Or we look for smaller keys

#apricot2017 GEAPRICOT2017 APNIC 43 pullill

Enter Elliptiec Curves

Alice creates a key pair, consisting of a private key integer d 4, randomly selected in the interval [1,n — 1]; and a public key curve point Q4 = d4 x G . We use x to denote elliptic curve point multiplication by a scalar.

For Alice to sign a message m, she follows these steps:

Calculate e = HASH(m), where HASH is a cryptographic hash function, such as SHA-2.

Let z be the L, leftmost bits of e, where L, is the bit length of the group order n.

Select a cryptographically secure random integer k from [1,n — 1]. 2 3

Calculate the curve paint (z1,1) =k x G. — x + a x +
Calculate 7= z; mod n. If r = 0, go back to step 3.

Caloulate s =k (z+rd4) mod n . If s = 0, go back to step 3.

The signature is the pair (r, s).

No oo n

When computing s, the string z resulting from HASH(m) shall be converted to an integer. Note that z can be greater than n. but not longer.l'}
As the standard notes, it is crucial to select different k for different signatures, otherwise the equation in step 6 can be solved for d 4, the private key: Given two signatures (r, s) and (., s'), employing the same unknown for different known

messages m and m/, an attacker can calculate z and 2/, and since s —

K1(2—) (@ll operations in this paragraph are done modulo) the atiacker can find k = ~— . Since s = k™! (2 + rd) , the attacker can now calculate the
s—3
k—z

s
private key dy = . This implementation failure was used, for example, to extract the signing key used in the PlayStation 3 gaming-console.[2] Another way ECDSA signature may leak private keys is when k is generated by a faulty

random number generator. Such a failure in random number generation caused users of Android Bitcoin Wallet to lose their funds in August 2013.13) To ensure that k is unique for each message one may bypass random number generation
completely and generate deterministic signatures by deriving k from both the message and the private key.[

Signature verification algorithm [edit]

For Bob to authenticate Alice's signature, he must have a copy of her public-key curve point @ 4. Bob can verify Q 4 is a valid curve point as follows:

. Check that Q 4 is not equal to the identity element O, and its coordinates are otherwise valid
. Check that Q 4 lies on the curve
. Checkthat n x Q4 = O

@ »

After that, Bob follows these steps:

. Verify that 7 and s are integers in 1, — 1]. If not, the signature is invalid.

Calculate e = HASH(m), where HASH is the same function used in the signature generation.
Let z be the L, leftmost bits of .

Caloulate w = s~' mod n.

Caloulate) = zw mod n and up = rw mod n.

Calculate the curve point (z1,y1) = w1 X G +uz X Q4 .

. The signature is valid if r = z; (mod n), invalid otherwise.

No o s wen

Note that using Shamir's trick, a sum of two scalar multiplications u; x G +uy X Q4 can faster than two scalar multplications d

Correctness of the algorithm [edit]

Itis not immediately obvious why verification even functions correctly. To see why, denote as C' the curve point computed in step 6 of verification,

C=u xG+uy x Q4
From the definition of the public key as Q4 = d x G,

C=u xG+udy x G @
Because elliptic curve scalar muttplication distributes over addition,

C=(u +usdy) x G
Expanding the definition of u; and u, from verification step 5,

C=(zs' +rdys ') x G
Collecting the common term 5%,

C=(z+rds)s xG
Expanding the definition of s from signature step 6,

C=(z+rdy)(z+rdg) (k) x G
Since the inverse of an inverse is the original element, and the product of an element's inverse and the element is the identity, we are left with
C=kxG

From the definition of r, this s verification step 6.

This shows only that a correctly signed message will vrify correctly; many other properties are required for a secure signature algorithm. j€]o A P RI COT 201 7 APN I C 4 3
#apricot_. .. B

=1

“It is not immediately obvious why
verification even functions correctly.” !!

#apricot2017

Enter Elliptiec Curves

Alice creates a key pair, consisting of a private key integer d 4, randomly selected in the interval [1,n — 1]; and a public key curve point Q4 = d x G . We use x to denote elliptic curve point multiplication by a scalar.

For Alice to sign a message m, she follows these steps:
Calculate e = HASH(m), where HASH is a cryptographic hash function, such as SHA-2.
Let z be the L, leftmost bits of e, where L, is the bit length of the group order n.

Select a cryptographically secure random integer k from [1,n — 1].
Calculate the curve point (z1,y) = k X G

Calculate r=z; mod n. If = 0, go back to step 3.

Calculate s = k™*(z+rd,) mod n . If s = 0, go back to step 3.

. The signature is the pair (r, 5).

No oo N

12 B 1L Ly 4 19 1L SUBL 1 1S ISty SIGHHIGIK L) G 1S AR UGG GG U 1G1 IO Ve
2. Check that Q 4 lies on the curve
3. Checkthat n x Q4 = 0

After that, Bob follows these steps:
Veriy that r and s are integers in [1,n. — 1]. If not, the signature is invali

. Caleulate e = HASH(m), where HASH is the same function used infie signature generation.

. Let z be the L, leftmost bits of ¢.

' mod n.
. Caleulate u; = zw mod n and u; = rw mod n.
Calculate the curve point (21, 41) = uy X G + up XG4

. The signature is valid if 7 = z; (mod n), invali

1
2
3,
4. Calculate w =
.
6.
7.

Note that using Shamir's trick, a sum of two scalar mult

Correctness of the algorithm [edit]
Itis not immediately obvious why verification even functions correctly. To see jvhy, denote as C the curve point computed in step 6 of verification,
C=u; xG+uyxQy
From the definition of the public key as Q4 = dj x G,

C=u; xG+udy xG
Because elliptic curve scalar multiplication distributes over addition,
C = (w1 +uds) x G
Expanding the definition of ; and u; from verification step 5,
C=(zs"+rdys) x G
Collecting the common term s,

C=(z+rdy)s ' xG
Expanding the definition of s from signature step 6,

O=(z+rdg)(z+rda) (k) x €
Since the inverse of an inverse is the original element, and the product of an element's inverse and the element is the identity, we are left with
C=kxG
From the definition of r, this is verification step 6.

This shows only that a correctly signed message will verify correctly; many other properties are required for a secure signature algorithm.

lications u; x G+ x Q4 can be calculated faster than two scalar multiplications done independently.]

2=x3+ax+b

- APRICOT2017 APNIC 43

ECDSA P-256

Elliptic Curve Cryptography allows for the construction
of “strong” public/private key pairs with key lengths
that are far shorter than equivalent strength keys using

RSA

A 256-bit ECC key should provide comparable security
to a 3072-bit RSA key

S5 APRICOT2017 APNIC 43 Y

#apricot2017

ECDSA vs RSS

$ dig +dnssec u5221730329.51425859199.15075.vcf100.5a593.y.dotnxdomain.net

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.51425859199.15075.vcf100.5a593.y.dot
;5 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61126

;5 flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;5 OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;3 QUESTION SECTION:
;u5221730329.51425859199.175075.vcf100.5a593.y.dotnxdomain.net. IN A

55 ANSWER SECTION:

u5221730329.51425859199.15075.vcf100.5a593.y.dotnxdomain.net. 1 IN A 144.76
u5221730329.51425859199.15075.vcf100.5a593.y.dotnxdomain.net. 1 IN RRSIG A
53 AUTHORITY SECTION:

nsl.5a593.y.dotnxdomain.net. 1 IN NSEC x.5a593.y.dotnxdomain
nsl.5a593.y.dotnxdomain.net. 1 IN RRSIG NSEC 13 5 1 202007242
5a593.y.dotnxdomain.net. 3598 IN NS nsl.5a593.y.dotnxdomain.net.
5a593.y.dotnxdomain.net. 3600 IN RRSIG NS 13 4 3600 20200724235900 201

;3 Query time: 1880 msec
ER: 127.0.0.1#53(127.0.0.1)
= o uTC 2015

SIZE rcvd: 527

ECDSA signed response — 527 octets

#apricot2017

$ dig +dnssec u5221730329.51425859199.15075.vcf100.5a593.z.dotnxdomain.ne

; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.51425859199.15075.vcf100.5a5
;5 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25461

;5 flags: gr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;5 OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;3 QUESTION SECTION:
;u5221730329.51425859199.15075.vcf100.5a593.z.dotnxdomain.net. IN A

;5 ANSWER SECTION:
u5221730329.51425859199.15075.vcf100.5a593.z.dotnxdomain.net. 1 IN /
u5221730329.51425859199.15075.vcf100.5a593.z.dotnxdomain.net. 1 IN f

;3 AUTHORITY SECTION:

33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3
33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3
5a593.z.dotnxdomain.net. 3599 IN NS nszl.z.dotnxdomain.net.
5a593.z.dotnxdomain.net. 3600 IN RRSIG NS 5 4 3600 20200724235

;5 Query time: 1052 msec

RSA signed response — 937 octets

=z APRICOT2017 APNIC 43

nxdomain.net

2.79.186
5 4 3600 202007242359C

16395067 .al2ec545.618
16395067.al2ec545.618

1729104013 1968 5a593

ECDSA has a history..

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Print/export

Mrasta a hnal

Article Talk

Create account Log in

Read Edit View history |Search Q

ECC patents

From Wikipedia, the free encyclopedia

Patent-related uncertainty around elliptic curve cryptography (ECC), or ECC patents, is one of the main factors limiting its
wide acceptance. For example, the OpenSSL team accepted an ECC patch only in 2005 (in OpenSSL version 0.9.8), despite
the fact that it was submitted in 2002.

According to Bruce Schneier as of May 31, 2007, "Certicom certainly can claim ownership of ECC. The algorithm was
developed and patented by the company's founders, and the patents are well written and strong. | don't like it, but they can
claim ownership."['] Additionally, NSA has licensed MQV and other ECC patents from Certicom in a US$25 million deal for
NSA Suite B algorithms.[?] (ECMQV is no longer part of Suite B.)

However, according to RSA Laboratories, "in all of these cases, it is the implementation technique that is patented, not the
prime or representation, and there are alternative, compatible implementation techniques that are not covered by the
patents."®] Additionally, Daniel J. Bernstein has stated that he is "not aware of" patents that cover the Curve25519 elliptic
curve Diffie-Hellman algorithm or its implementation.[*] RFC 6090 &, published in February 2011, documents ECC
techniques, some of which were published so long ago that even if they were patented any such patents for these previously
published techniques would now be expired.

Contents [hide]
1 Known patents
2 Certicom's lawsuit against Sony
3 See also
4 References
5 External links

=z APRICOT2017 APNIC 43

ECDSA and OpenSSL

e OpenSSL added ECDSA support as from 0.9.8 (2005)
e Other bundles and specific builds added ECDSA support later

* But deployed systems often lag behind the latest bundles, and
therefore still do not include ECC support in their running
configuration

papricot2017 £ APRICOT2017 APNIC 43 ¥

Is ECDSA viable?

What does NIST say?

http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

NIST Special Publication 800-57 Part 3
Revision 1

Recommendation for
Key Management

Part 3: Application-Specific Key
Management Guidance

Elaine Barker
Quynh Dang

This publication is available free of charge from:
#apricot2017 http://dx.doi.org/10.6028/NIST.SP.800-57pt3rl

Table 2-1: Recommended Algorithms and Key Sizes

Key Type

Digital Signature keys used
for authentication
(for Users or Devices)

Algorithms and Key Sizes

RSA (2048 bits
CDSA (Curve P-256)

Digital Signature keys used
for non-repudiation
(for Users or Devices)

RSA (2048 bits
CDSA (Curves P-256 pr P-384)

CA and OCSP Responder
Signing Keys

RSA (2048 or 3072bits)
CDSA (Curves P-256 or

384)

Key Establishment keys
(for Users or Devices)

RSA (2048 bits)

Dilfie- 8 bits)
ECDH (Curves P-256)or P-384)

=z APRICOT 2017 APNIC 43

Do folk use ECDSA for public keys?

$ dig +dnssec www.cloudflare-dnssec-auth.com

; <<>> DiG 9.9.6-P1 <<>> +dnssec www.cloudflare-dnssec-auth.com

;3 global options: +cmd

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7049

;3 flags: gqr rd ra ad; QUERY: 1, ANSWER: 6, AUTHORITY: 0O, ADDITIONAL: 1

;3 OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;www. cloudfTlare-dnssec-auth. com. IN A

;5 ANSWER SECTION:

www.cloudflare-dnssec-auth.com. 300 IN A 104.20.23.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.21.140
www.cloudflare-dnssec-auth.com. 300 IN A 104.20.19.140
www.cloudflare-dnssec-auth.com. 300 IN A $04.20.22.140
www.cloudflare-dnssec-auth.com. 300 IN A 20.20.140
www.cloudflare-dnssec-auth.com 300 IN RRSIG 3 300 20150317021923 20150315001923 35273

cloudflare-dnssec-auth.com. pgBvfQku4118ted2hGL908Ns DT8/jvQ+404h4tGmAXOfDBEOOrb
tLiw7mcdowYLoOnjovzYh3Q00duOxw==

;3 Query time: 237 msec w R s ECDSA P—2<6

;3 SERVER: 127.0.0.1#53 7.0.0.1)
;3 WHEN: Mon Mar 16
;3 MSG SIZE rc)

S'%neéx reSponse s 26/ octets \on«a.'
#apricot2017 Fa:!EAPRICOT2017 APNIC 43

So lets use ECDSA for DNSSEC

Or maybe we should look before we leap...

— |s ECDSA a “well supported” crypto protocol? *

— If you signed using ECDSA would resolvers
validate the signature?

It’s not that crypto libraries deliberately exclude ECDSA support these days.
The more likely,issue appears to be the operational practic es of some ISPs
who use crufty old software sets to support DNS resolvers which are now
running old libraries that predate the incorporation of ECDSA into Open SSL 4
S=APRICOT2017 APNIC 43

#apricot2017

Where are the users who can validsate
BECDSA-signed DNSSEC records?

https://stats.labs.apnic.net/ecdsa J&8S |
#apricot2017 SEAPRICOT2017 APNIC 43 'Saliiiik

And where ECDSA support is
missing

DNSSEC RSA and NOT ECDSA Validation Rate by country (%)

#apricot2017 https://stats.labs.apnic.net/ecdsa “z APRICOT 2017 APNIC 43 SRR |

Today we're in Vietnam..

Region Map for South-Eastern Asia (035)

#apricot2017 “Z APRICOT2017 APNIC 43 -

Today we're in Vietnam..

Use of DNSSEC-ECDSA Validation for Vietnam (VN)

Zoom: 1th 1d 5d 1w 1m 3m 6m 1y max @ECDSA-Validating @RSA-Validating ®ECDSA- and RSA-Validating @ Uses Google

45

40

- -
o (&)

Oct 2016 10 17 24 Nov2016 7 14 21 28 Dec2016 12 19 26
Oct 2016 10 17 24 Nov 2016 7 14 21 28 | Dec 2016 12 4/1’:_’ 26

#apricot2017 SEAPRICOT2017 APNIC 43 el

#apricot2017

The Top b Vietnam

ASN AS Name ECDSA Validates
AS45899 VNPT-AS-VN VNPT Corp 22.21%
AS7552 VIETEL-AS-AP Viettel Corporation 21.30%
AS18403 FPT-AS-AP The Corporation for Financing Promoting Technology 19.75%
AS131178 KINGCORP-AS-IX Opennet Internet Exchange 5.28%
AS24086 VIETTEL-AS-VN Viettel Corporation 12.52%

RSA Validates
17.27%
17.71%
17.10%

4.72%
10.28%

ECDSA and RSA Validates ECDSA : RSA Ratio (%) Uses Google PDNS

14.88% 100.00%
15.79% 100.00%
14.88% 100.00%
4.12% 100.00%
8.71% 100.00%

ISPs

Samples
41.95% 7,749,061
34.51% 4,240,602
31.98% 3,985,424
13.75% 2,939,888
23.01% 1,349,824

And the extent to which their uses perform DNSSEC validation with ECDSA and RSA

sz APRICOT 2017

APNIC 43

#apricot2017

And it if wasn't for

ASN
AS45899
AS7552
AS18403
AS131178
AS24086

AS Name
VNPT-AS-VN VNPT Corp
VIETEL-AS-AP Viettel Corporation
FPT-AS-AP The Corporation for Financing Promoting Technology
KINGCORP-AS-IX Opennet Internet Exchange
VIETTEL-AS-VN Viettel Corporation

There would grobably be

ECDSA Validates
22.21%

21.30%

19.75%

5.28%

12.52%

RSA Validates ECDSA and RSA Validates ECDSA : RSA Ratio (%) Uses Google PDNS

17.27% 14.88% 100.00%
17.711% 15.79% 100.00%
17.10% 14.88% 100.00%
4.72% 4.12% 100.00%
10.28% 8.71% 100.00%

And no ECDIA

sz APRICOT 2017

41.95%
34.51%
31.98%
13.75%
23.01%

no DNISEC ot all

APNIC 43

[4 2 J

4

APNIC Labs Report on ECDSA use

Zoom: 1h 1d 5d 1w 1m 3m 6m 1y max @ ECDSA-Validating @ RSA-Validating @®EC Validating @ Uses Google

e

https://stats.labs.apnic. net/ecdsa

Oct 2016
#apricot2017 [E Oct 2016

Me: gih@apnic.net

#apricot2017 Ear:E: APRICOT2017 APNIC 43

