
Re-Engineering the Root of
the DNS
Geoff Huston,
Chief Scientist APNIC

In this presentation
• I’ll talk about the DNS, and the root server infrastructure in

particular

• And some recent initiative by APNIC to try and improve the
situation

2

The Structure of the Domain Name System
The Domain Name System (DNS) is a distributed data collection using a delegation hierarchy that reflects the
internal hierarchical structure of domain names. At each level in the name hierarchy each label represents a
potential point of administrative delegation

www.example.com.

. (“root”) zone

com. zone

example.com. zone

www.example.com.

The Structure of the Domain Name System
The Domain Name System (DNS) is a distributed data collection using a delegation hierarchy that reflects the
internal hierarchical structure of domain names. At each level in the name hierarchy each label represents a
potential point of administrative delegation

www.example.com.

. (“root”) zone

com. zone

example.com. zone

www.example.com.

Delegation of the label “com”

Delegation of the label “example”

terminal label “www”

DNS Name Servers
• Every DNS zone has a set of authoritative servers that can

answer queries for names defined by that zone
• The Root Zone is just another zone in that respect, and the

authoritative servers for that zone are called “Root Servers”
– There are 13 Root Server names
– And these names are used to label Anycast Name Server

constellations
– Which means that there are probably some thousands of discrete

Root Server instances if you could peek inside all of these these
anycast clouds

5

Resolving a DNS Name
Your resolver needs need to ask a DNS server for the zone that contains the
terminal label for the associated information (resource record) associated with the
DNS name

But…
Where exactly is the zone cut?
Who are the servers?

So resolvers discover this information by performing a top-down iterative search…

Resolving a DNS Name
Qname: www.example.com.?

. (“root”) zone server

Response: servers for the com. zone

Resolving a DNS Name
Qname: www.example.com.?

. (“root”) zone server

Response: servers for the com. zone

com. zone serverQname: www.example.com.?

Response: servers for the example.com. zone

Resolving a DNS Name
Qname: www.example.com.?

. (“root”) zone server

Response: servers for the com. zone

com. zone serverQname: www.example.com.?

Response: servers for the example.com. zone

example.com. zone server

www.example.com.

terminal label
Qname: www.example.com.?

Response: Resource records for terminal label

Resolving a DNS Name
Qname: www.example.com.?

. (“root”) zone server

Response: servers for the com. zone

com. zone serverQname: www.example.com.?

Response: servers for the example.com. zone

example.com. zone server

www.example.com.

terminal label
Qname: www.example.com.?

Response: Resource records for terminal label

Every DNS
resolution procedure
starts with a query
to the root!

How to be bad

If an attacker could prevent the root servers
from answering DNS queries then the entire
Internet will suffer!

11

Every DNS
resolution procedure
starts with a query
to the root!

Caching in the DNS
The main role of the root server system is to answer queries
that are not cached in local name caches

The vast majority of the queries that are passed to the root
zone servers (some 2/3 of root queries) generate a “no-such-
name” (NXDOMAIN) response from the root system

How to be bad

13

To attack the root servers you need to
get past DNS resolver caches.

This means you need to have every
query in the DNS attack flow ask for
a different non-existent name

14

Root Servers are a highly
visible attack target

15

Root Servers are a highly
visible attack target

16

Root Servers are a highly
visible attack target

If you can prevent resolvers from getting
answers from the root then the resolvers will
stop answering queries as their local cache
expires

17

Root Servers are a highly
visible attack target

If you can prevent resolvers from asking the
root then the resolvers will stop answering
queries as their cached responses expire

18

Root Servers are a highly
visible attack target

If you can prevent resolvers from asking the
root then the resolvers will stop answering
queries as their cached responses expire

How should we defend the Root?
• Larger Root Server platforms?
• More Root Server Letters?

• More Anycast Instances?
• Change Root Server response behaviours?

• Or…

19

How should we defend the Root?
• Larger Root Server platforms?
• More Root Server Letters?

• More Anycast Instances?
• Change Root Server response behaviours?

• Or…

20

* Distributed parallel attacks can scale up in
intensity more effectively than a single point of
service can scale its defence mechanisms

How should we defend the Root?
• Larger Root Server platforms?
• More Root Server Letters?

• More Anycast Instances?
• Change Root Server response behaviours?

• Or…

21

* The limit of 13 distinct root server names is an
inherited limit that these days has a political
dimension that has largely supersedes the original
technical reasons for the limit. In any case more
letters is not a very good DDOS defence!

How should we defend the Root?
• Larger Root Server platforms?
• More Root Server Letters?

• More Anycast Instances?
• Change Root Server response behaviours?

• Or…

22

Anycast Root Servers
12 of the 13 root server “letters” operate some form of “anycast”
server constellation. All the servers in a constellation respond to the
same public IP addresses. The routing system will direct resolvers
to pass their query to a particular root letter to the “closest”
member of the letter’s anycast constellation.

Anycast provides:
– faster responses to queries to the root for many DNS resolvers
– Greater resilience to hostile traffic by load sharing widely distributed

attacks across the entire anycast constellation, and absorbing a single
point attack on a single server instance

Anycast Root Servers
12 of the 13 root server “letters” operate some form of “anycast”
server constellation. All the servers in a constellation respond to the
same public IP addresses. The routing system will direct resolvers
to pass their query to a particular root letter to the “closest”
member of the letter’s anycast constellation.

Anycast provides:
– faster responses to queries to the root for many DNS resolvers
– Greater resilience to hostile traffic by load sharing widely distributed

attacks across the entire anycast constellation, and absorbing a single
point attack on a single server instance

How do we defend the Root today?
As the traffic levels to the root servers increases both as
steady state query levels and instances of attacks, we keep
on adding more instances to the existing anycast clouds

The attacks get bigger

26

Our defence is bigger walls

27

We are scaling the DNS root server
infrastructure in order to be resilient
against floods of queries about non-
existent names coming from the existing
DNS resolvers, who are scaling their own
capabilities to survive the very same
query attacks that are being directed
against them!

28

The attackers are our own recursive
resolvers!

How do we defend the Root today?
As the traffic levels to the root servers increases both as
steady state query levels and instances of attacks, we keep
on adding more instances to the existing anycast clouds

What we are in effect doing is building ever bigger and larger
trash processors to handle ever larger amounts of garbage
queries to cope with these ever larger attacks

Can we jump out of this vicious cycle?

Can we change the behaviour of the DNS system to improve
both its service and its resilience?

DNSSEC changes Everything
Before DNSSEC we relied on the assumption that if we asked
an IP address of a root server, then the response was
genuine

With DNSSEC we can ask anyone, and then use DNSSEC
validation to assure ourselves that the answer is genuine

How can we use this?

DNSSEC-Enabled Directions for the Root
Service
If we could answer NXDOMAIN queries from recursive
resolvers we could reduce the load on the root servers by
close to 70%

This would be a very significant win:
– reducing root query traffic
– providing faster response to these queries
– reduces the local cache load on recursive resolvers

Local Root Secondaries – RFC 7706

Enlist DNS resolvers to offer a root zone secondary service

If resolvers use this approach then they only need to query a root server
infrequently and perform a zone transfer of the current state of the root
zone (IXFR from a root server), and use this validated copy of the root
zone to directly answer all queries that refer to the root zone

NSEC caching – RFC 8198
Most of the queries seen at the root are for non-existent domains, and resolvers cache
the non-existence of a given name

But a DNSSEC-signed NXDOMAIN response from the root zone actually describes a
range of labels that do not exist, and it’s the range that is signed, not the actual query
name

If resolvers cached this range and the signed response, then they could use the same
signed response to locally answer a query for any name that falls within the same label
range

This has a similar effect to RFC7706, but without any configuration overhead, nor is
there any requirement for supporting root zone transfers.

NSEC caching

35

For example, if you were to query the root server for
the non-existant name www.example. the returned
response from the root says that there are NO TLDS
between everbank. and exchange.

The same response can be used to respond to queries
for every TLD between these labels.

So we can cache this range response and use it to
respond to subsequent queries that fall into the same
range

Architecturally speaking…
• Rather than have recursive resolvers act as “amplifiers” for DNS

queries for non-existent names, NSEC caching enlists these
recursive resolvers to act on behalf of the root servers, and
provide the answers for them.

• This approach uses existing DNS functionality and existing
queries – there is nothing new in this.

• The change here is to take advantage of the use of the NSEC
response to define a range of names, allowing what is in effect
semi-wildcard cache entries that can be used to respond to a
range of query labels

36

Impacts…
• Rather than trying to expand the capabilities of the root zone servers,

we can leverage the massive number of already deployed recursive
resolvers to extend their cache to cover both defined and non-existant
root labels

• We anticipate that this will have a major effect on the DNS by absorbing
most of the current root query load at the edge, rather than passing
these queries into the root system

37

Impacts…
NSEC caching can also help recursive resolvers

• Instead of caching non-existent individual names they can cache the
NSEC-described range, and refresh the cached NSEC record instead of
any individual name

• This will shrink the demands placed on the local cache, which can
improve local cache performance in the recursive resolver

38

Coming to a Bind Resolver near you

APNIC has sponsored the inclusion of this NSEC caching
code for the root zone in the forthcoming Bind 9.12 release
This function will be enabled by default in this release

We hope that other DNS resolver vendors also implement this
feature, as widespread use of NSEC caching will have a
dramatic positive impact on the root server ecosystem!

40

