
IPv6: Are we really 
ready to turn off 

IPv4?



In-situ transition…



In-situ transition…

IPv4 Internet

Phase 1 – Early Deployment

Edge Dual-Stack 
Networks

IPv6 networks interconnect by
IPv6-over-IPv4 tunnels



In-situ transition…
Phase 2 – Dual Stack Deployment

Edge Dual-Stack
Networks

IPv6 networks interconnect by
Dual Stack transit paths

Transit Dual-Stack
Networks



In-situ transition…

IPv6 Internet

Phase 3 – IPv4 Sunset

Edge Dual-Stack 
Networks

IPv4 networks interconnect by
IPv4-over-IPv6 tunnels



We are currently in Phase 2 of this transition

Some 15% to 20% of Internet users have IPv6 capability

Most new IP deployments rely on NATS and IPv4 (and may, or may not, 
also have IPv6)

IPv4-only Legacy networks are being slowly migrated to dual stack



The Map of IPv6 penetration – August 2017



The Map of IPv6 penetration – August 2017



We are currently in Phase 2 of this transition

Some 15% of Internet users have IPv6 capability

Most new IP deployments use IPv6

IPv4-only Legacy networks are being (gradually) migrated to dual stack



Today
We appear to be in the middle of the transition!

Dual Stack networks cannot drop support for IPv4 as 
long as significant services and user populations do not 
support IPv6 – and we can’t tell when that may change

Nobody is really in a position to deploy a robust at-scale 
ipv6-only network service today, even if they wanted to!

And we are not even sure if we can!



Today
We appear to be in the middle of the transition!

Dual Stack networks cannot drop support for IPv4 as 
long as significant services and user populations do not 
support IPv6 – and we can’t tell when that may change

Nobody is really in a position to deploy a robust at-scale 
ipv6-only network service today, even if they wanted to!

And we are not even sure if we can!



The Issue
We cannot run Dual-Stack services indefinitely

At some point we need to support networks that only 
have IPv6

Is that viable?



In other words…
What do we rely on today in IPv4 that does not appear 
to have a clear working counterpart in IPv6?

If the answer is “nothing” then we are done!

But if there are issues here, then we should be working 
on it!



IPv6: What changed?

Type of Service is changed to Traffic Class

32 bit Fragmentation Control were pushed into an Extension Header

Flow Label Added

Options and Protocol fields replaced by Extension Headers

Checksum becomes a media layer function



IPv4 Router

IPv4 header

Payload
TCP/UDP header

IPv4 header

Payload
TCP/UDP header1

2

IPv6: What changed?
IPv4 “Forward Fragmentation”



IPv4 Router

IPv4 header

Payload
TCP/UDP header

IPv4 header

Payload
TCP/UDP header

IPv6 Router

IPv6 header

Payload
TCP/UDP xtn header

Payload
TCP/UDP xtn header

ICMPv6 PTB
IPv6 header

IPv6 header

Payload
TCP/UDP xtn header

Fragmentation xtn header

1

2

3

1
2

IPv6: What changed?
IPv4 “Forward Fragmentation”

IPv6 “Source Fragmentation”

Source

Source



New Dependencies

For IP fragmentation to work in IPv6 then:

- all ICMPv6 messages have to be passed backwards from the interior
of the network to the sender

- IPv6 packets containing a IPv6 Fragmentation Extension
header should not be dropped



ICMPv6

Only the sending host now has control of fragmentation – this is a 
new twist

A received ICMPv6 message needs to alter the sender’s state to that 
destination:

For TCP, if the ICMP payload contains the TCP header, then you can 
pass this to the TCP control block. TCP can alter the session MSS 
and resend the dropped data, or you can just alter the local per-
destination MSS and hope that TCP will be prompted to resend

For UDP – um, err, um well

Maybe you should store the revised path MTU in a host 
forwarding table cache for a while

If you ever need to send another UDP packet to this host you can 
use this cache entry to guide your fragmentation behaviour



ICMPv6 and Anycast

Sender Instance
Client

Sender Instance

Sender Instance

Anycast Constellation

Sender Instance

Sender Instance

It is not obvious (or even assured) that every router on the path 
from an anycast instance to a client host will necessarily be part 
of the same anycast instance “cloud”

The implication is that in anycast, the reverse ICMPv6 PTB 
messages will not necessarily head back to the original sender!



IPv6 Fragmentation Extension Header Handling 

The extension header sits between the IPv6 packet header 
and the upper level protocol header for the leading fragged 
packet, and sits between the header and the trailing payload 
frags for the trailing packets

Practically, this means that transport-protocol aware packet 
processors/switches need to decode the extension header 
chain, if its present, which can consume additional cycles to 
process/switch a packet – and the additional time is not 
predictable. For trailing frags there is no transport header!

Or the unit can simply discard all Ipv6 packets that contain 
extension headers!

Which is what a lot of transport protocol sensitive IPv6 
deployed switching equipment actually does (e.g. load 
balancers!)

IPv6 header

Payload

TCP/UDP xtn header

Fragmentation xtn header



IPv6 Fragmentation Extension Header Handling 

There is a lot of “drop” behaviour in the Ipv6 Internet for 
Fragmentation Extension headers

RFC7872 – recorded EH packet drop rates of 30% - 40%

This experiment sent fragmented packets towards well-known servers 
and observed whether the server received and reconstructed the 
fragmented packet

But sending fragmented queries to servers is not all that common –
the reverse situation of big responses is more common

So what about sending fragmented packets BACK from servers –
what’s the drop rate of the reverse case?



IPv6 Fragmentation Extension Header Handling 

We used an ad-based measurement system, using a custom packet 
fragmentation wrangler as a front end to a DNS and Web server to 
test IPv6 fragmentation behaviour

Client

DNS Resolver IPv6 DNS Server

IPv6 NGINX Server

IPv6 ‘Fragmenter’DNS Goo



We used an ad-based measurement system, using a custom packet 
fragmentation wrangler as a front end to a DNS and Web server to 
test IPv6 fragmentation behaviour

IPv6 Fragmentation Extension Header Handling 

Client

DNS Resolver
IPv6 ‘Fragmenter’DNS Goo

We use a technique of “glueless” delegation and 
fragmentation of the NS query response to allow us to 
detect if the DNS resolver received the fragmented response

We track TCP ACKs at the server to see if the client 
received the fragmented TCP response

Client

DNS Resolver IPv6 DNS Server

IPv6 NGINX Server



IPv6 Fragmentation Extension Header Handling 

Our experiments across some 40M individual sample points:

37% of end users who used IPv6-capable DNS resolvers could not 
receive a fragmented IPv6 response

20% of IPv6-capable end users could not receive a fragmented IPv6 
packet



IPv6 Fragmentation is very unreliable 
Why don’t we see this unreliability in today’s IPv6 networks 
affecting user transactions?

Because IPv4 papers over the problem!

In a Dual-Stack environment there is always the option to flip to 
use IPv4 if you are stuck with Ipv6.

The DNS does this, and Happy Eyeballs does this

So there is no user-visible problem in a dual stack environment

This means that there is no urgent imperative to correct these 
underlying problems in deployed IPv6 networks

There is little in the way of practical 
incentives to fix this today!



Living without IPv6 Fragmentation

If we apparently don’t want to fix this, can we live with it?

We are living with it in a Dual Stack world, because Ipv4 just 
makes it all better!

But what happens when there is no Ipv4 left?

TCP can work as long as IPv6 sessions use conservative MSS sizes

UDP can work as long as UDP packet sizes are capped so as to avoid 
fragmentation

DNSSEC!



Where are we?

In terms of protocol support and reliability, It seems that we are mostly ready 
for an IPv6-only environment, with the one exception of IPv6 packet 
fragmentation handling. 

The consequence is that today’s environment cannot support an Ipv6-only 
environment for the DNS, and DNSSEC in particular

Change the deployed IPv6 network 
and change deployed vendor equipment 
to correctly manage fragmentation, 
and stop using anycast!

Change host configurations and 
change protocol behaviours to avoid 
any reliance at all on correct handling 
of packet fragmentation



An IPv6-only Internet?

The issue of the unreliability of IPv6 fragmentation is a significant issue.

These mitigation approaches represent significant effort and cost

Effort and cost that is unnecessary for as long as IPv4 can paper over the 
problem!

So we are taking the easy option, and collectively we are doing nothing at all!

Maybe if we close our eyes long enough all this will just go away!



Thanks!


