
Surviving IPv6
Fragmentation

Geoff Huston
APNIC Labs

IPv6 and Packet Fragmentation

IPv6	made	two	major	changes	to	IP’s	handling	of	packet	fragmentation:
• The	fragmentation	control	header	has	been	moved	out	of	the	IP	
header	to	become	an	extension	header
• In	other	words	the	UDP	/	TCP	protocol	header	is	pushed	further	into	the	
packet	and	to	find	it	you	need	to	follow	the	header	chain

• The	IPv4	‘Don’t	Fragment’	bit	is	jammed	on
• In	the	case	of	path	MTU	issues	IPv6	routers	should	not	perform	
fragmentation	on	the	fly,	but	are	required	to	pass	an	ICMPv6	PTB	message	
back	to	the	packet’s	sender

IPv4 Router

IPv4 header

Payload
TCP/UDP header

IPv4 header

Payload
TCP/UDP header1

2

IPv4 and IPv6 handling of Path MTU issues
IPv4 “Forward Fragmentation”

IPv4 Router

IPv4 header

Payload
TCP/UDP header

IPv4 header

Payload
TCP/UDP header

IPv6 Router

IPv6 header

Payload
TCP/UDP xtn header

Payload
TCP/UDP xtn header

ICMPv6 PTB
IPv6 header

IPv6 header

Payload
TCP/UDP xtn header

Fragmentation xtn header

1

2

3

1
2

IPv4 “Forward Fragmentation”

IPv6 “Source Fragmentation”

Source

Source

IPv4 and IPv6 handling of Path MTU issues

New Dependencies
For	IP	fragmentation	to	work	in	IPv6	then:

• all	ICMPv6	messages	have	to	be	passed	backwards from	
the	interior	of	the	network	to	the	sender

and

• IPv6	packets	containing	a	IPv6	Fragmentation	Extension	
header	should	not be	dropped

ICMPv6 PTB handling
Only	the	sending	host	now	has	control	of	fragmentation

A	received	ICMPv6	message	needs	to	alter	the	sender’s	state	to	that	
destination:

For	TCP,	if	the	ICMP	payload	contains	the	TCP	header,	then	you	can	
pass	this	to	the	TCP	control	block.	TCP	can	alter	the	session	MSS	
and	resend	the	dropped	data,	or	you	can	just	alter	the	local	per-
destination	MSS	and	hope	that	TCP	will	be	prompted	to	resend

ICMPv6 PTB handling
Only	the	sending	host	now	has	control	of	fragmentation

A	received	ICMPv6	message	needs	to	alter	the	sender’s	state	to	that	
destination:

For	UDP	– um,	err,	um	well

ICMPv6 PTB handling
Only	the	sending	host	now	has	control	of	fragmentation

A	received	ICMPv6	message	needs	to	alter	the	sender’s	state	to	that	
destination:

For	UDP	– um,	err,	um	well

Maybe	you	should	store	the	revised	path	MTU	in	a	per-host		
forwarding	table	cache	for	a	while

If	you	ever	need	to	send	another	UDP	packet	to	this	host	you	can	
use	this	cache	entry	to	guide	your	fragmentation	behaviour

ICMPv6 PTB and Anycast

Sender Instance
Client

Sender Instance

Sender Instance

Anycast Constellation

Sender Instance

Sender Instance

It	is	not	obvious	(or	even	assured)	that	every	router	on	the	path	from	an	anycast
instance	to	a	client	host	will	necessarily	be	part	of	the	same	anycast instance	“cloud”	

The	implication	is	that	in	anycast,	the	reverse	ICMPv6	PTB	messages	will	not	necessarily	
head	back	to	the	original	sender!

IPv6 Fragmentation Extension Header
The	extension	header	sits	between	the	IPv6	packet	header	and	
the	upper	level	protocol	header	for	the	leading	fragged	packet,	
and	sits	between	the	header	and	the	trailing	payload	frags	for	
the	trailing	packets

Practically,	this	means	that	transport-protocol	aware	packet	
processors/switches	need	to	decode	the	extension	header	
chain,	if	its	present,	which	can	consume	additional	cycles	to	
process/switch	a	packet	– and	the	additional	time	is	not	
predictable.	For	trailing	frags	there	is	no	transport	header!

Or	the	unit	can	simply	discard	all	IPv6	packets	that	contain	
extension	headers	- which	is	what	a	lot	of	transport	protocol	
sensitive	IPv6	deployed	switching	equipment	appears	to	do!

IPv6 header

Payload

TCP/UDP xtn header

Fragmentation xtn header

Who uses Fragmentation anyway?

• Well,	the	DNS	is	a	good	place	to	start	looking!

Who uses Fragmentation anyway?

• Well,	the	DNS	is	a	good	place	to	start	looking!$ dig +dnssec DNSKEY org
; <<>> DiG 9.8.3-P1 <<>> +dnssec DNSKEY org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21353
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 7, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 512;
; QUESTION SECTION:
;org. IN DNSKEY
;; ANSWER SECTION:
org. 861 IN DNSKEY 256 3 7 AwEAAXxsMmN/JgpEE9Y4uFNRJm7Q9GBwmEYUCsCxuKlg
org. 861 IN DNSKEY 256 3 7 AwEAAayiVbuM+ehlsKsuAL1CI3mA+5JM7ti3VeY8ysmo
org. 861 IN DNSKEY 257 3 7 AwEAAZTjbIO5kIpxWUtyXc8avsKyHIIZ+LjC2Dv8naO+
org. 861 IN DNSKEY 257 3 7 AwEAAcMnWBKLuvG/LwnPVykcmpvnntwxfshHlHRhlY0F
org. 861 IN RRSIG DNSKEY 7 1 900 20170815152632 20170725142632 3947
org. 861 IN RRSIG DNSKEY 7 1 900 20170815152632 20170725142632 9795
org. 861 IN RRSIG DNSKEY 7 1 900 20170815152632 20170725142632 17883
;; Query time: 134 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Mon Jul 31 12:07:16 2017
;; MSG SIZE rcvd: 1625

The response to a DNSKEY query for .org
uses a response of 1,625 octets!

What can happen to a “large”
DNS response?

$ dig +bufsize=4096 +dnssec question.dotnxdomain.net. @8.8.8.8

; <<>> DiG 9.9.5-9+deb8u10-Debian	<<>>	+bufsize=4096 +dnssec question.dotnxdomain.net. @8.8.8.8
;; global options: +cmd
;; Got answer:
;;	->>HEADER<<- opcode:	QUERY,	status:	SERVFAIL,	id: 34058
;; flags: qr rd ra;	QUERY:	1,	ANSWER:	0,	AUTHORITY:	0,	ADDITIONAL:	1	

;;	OPT	PSEUDOSECTION:	
;	EDNS:	version: 0, flags: do; udp: 512
;;	QUESTION	SECTION:	
;question.ap2.dotnxdomain.net.	IN A

;; Query time: 3477 msec
;;	SERVER:	8.8.8.8#53(8.8.8.8)	
;;	WHEN:	Thu Jul 06	04:57:41	UTC	2017	
;;	MSG	SIZE rcvd: 104

What can happen to a “large”
DNS response?

$ dig +bufsize=4096 +dnssec question.dotnxdomain.net. @8.8.8.8

; <<>> DiG 9.9.5-9+deb8u10-Debian	<<>>	+bufsize=4096 +dnssec question.dotnxdomain.net. @8.8.8.8
;; global options: +cmd
;; Got answer:
;;	->>HEADER<<- opcode:	QUERY,	status:	SERVFAIL,	id: 34058
;; flags: qr rd ra;	QUERY:	1,	ANSWER:	0,	AUTHORITY:	0,	ADDITIONAL:	1	

;;	OPT	PSEUDOSECTION:	
;	EDNS:	version: 0, flags: do; udp: 512
;;	QUESTION	SECTION:	
;question.ap2.dotnxdomain.net.	IN A

;; Query time: 3477 msec
;;	SERVER:	8.8.8.8#53(8.8.8.8)	
;;	WHEN:	Thu Jul 06	04:57:41	UTC	2017	
;;	MSG	SIZE rcvd: 104

The DNS expects Fragmentation to
just work!
When	a	resolver	offers	no EDNS(0)	UDP	buffer	size	then	the	server	offers	a	
truncated	UDP	response	no	larger	than	512	octet	of	DNS	payload

The	resolver	should	be	capable	of	interpreting	this	truncated	response	
as	a	signal	to	re-query	using	TCP	

When	a	resolver	offers	a	large	EDNS(0)	UDP	buffer	size	then	this	denotes	a	
capability	of	the	resolver	to	process	a	large	response	– the	server	may	
then	send	a	large	UDP	response,	which	may	involve	UDP	fragmentation

However…

UDP	Fragmentation	has	its	problems
• UDP	trailing	fragments	in	IPv4	and	IPv6	may	encounter	fragment	filtering	
rules	on	firewalls	in	front	of	resolvers

However…

UDP	Fragmentation	has	its	problems
• UDP	trailing	fragments	in	IPv4	and	IPv6	may	encounter	fragment	filtering	rules	on	firewalls	in	
front	of	resolvers

• Large	UDP	packets	in	IPv6	may	encounter	path	MTU	mismatch	problems,	and	
the	ICMP6	Packet	Too	Big	diagnostic	message	may	be	filtered.
• Even	if	it	is	delivered,	the	host	may	not	process	the	message	due	to	the	lack	
of	verification	of	the	authenticity	of	the	ICMP6	message.	
• Because	the	protocol	is	UDP,	receipt	of	an	ICMP6	message	will	not	cause	
retransmission	of	a	re-framed	packet.	

However…

UDP	Fragmentation	has	its	problems
• UDP	trailing	fragments	in	IPv4	and	IPv6	may	encounter	fragment	filtering	
rules	on	firewalls	in	front	of	resolvers

• Large	UDP	packets	in	IPv6	may	encounter	path	MTU	mismatch	problems,	and	
the	ICMP6	Packet	Too	Big	diagnostic	message	may	be	filtered.	
• Even	if	it	is	delivered,	the	host	may	not	process	the	message	due	to	the	lack	
of	verification	of	the	authenticity	of	the	ICMP6	message.	Because	the	
protocol	is	UDP,	receipt	of	an	ICMP6	message	will	not	cause	retransmission	
of	a	re-framed	packet.

• UDP	fragments	in	IPv6	are	implemented	by	Extension	Headers.	There	is	some	
evidence	of	deployment	of	IPv6	switching	equipment	that	unilaterally	discards	
IPv6	packets	with	extension	headers

Is this a problem for today’s
IPv6 Internet?
• Can	we	measure	the	extent	to	which	users	might	be	affected	with	
this	scenario	of	large	DNS	responses,	DNS	resolvers	and	IPv6?

IPv6 Fragmentation Handling
There	is	a	lot	of	“drop”	behaviour in	the	Ipv6	Internet	for	Fragmentation	
Extension	headers

RFC7872	– recorded	EH	packet	drop	rates	of	30%	- 40%

This	experiment	sent	fragmented	packets	towards	well-known	servers	
and	observed	whether	the	server	received	and	reconstructed	the	
fragmented	packet

But	sending	fragmented	queries	to	servers	is	not	all	that	common	– the	
reverse	situation	of	big	responses	is	more	common

So	what	about	sending	fragmented	packets	BACK	from	servers	– what’s	the	
drop	rate	of	the	reverse	case?

Our Measurement Approach

We	use	an	Online	Ad	platform	to	enroll	endpoints	to	attempt	to	
resolve	a	set	of	DNS	names:
• Each	endpoint	is	provided	with	a	unique	name	string	(to	eliminate	the	effects	
of	DNS	caching)
• The	DNS	name	is	served	from	our	authoritative	servers
• Resolving	the	DNS	name	requires	the	user’s	DNS	resolvers	to	receive	a	
fragmented	IPv6	packet

“Glueless” Delegation to detect IPv6
Fragmentation Handling

“Parent” name server

“Sibling” name server

“Child” name server

The “child” name server will
only be queried if the resolver
could receive the response from
the sibling name server

Reply	with	the	DNS	names	of	the	name	
servers,	but	not	their	IP	addresses

Secondary	objective:	resolve	these
name	server	names	to	their	IP	addresses

Resume	the	original	name	resolution	task

Use a modified DNS server that
fragments all DNS responses

V6, the DNS and Fragmented UDP

Total	number	of	tests:		10,851,323
Failure	Rate	in	receiving	a	large	response:	4,064,356

IPv6	Fragmentation	Failure	Rate:	38%

Which Resolvers?

• 10,115	IPv6	seen	resolvers
• 3,592	resolvers	were	consistently	unable	to	resolve	the	target	
name	(likely	due	to	failure	to	receive	the	fragmented	response)
• Which	is	too	large	a	list	to	display	here
• But	we	can	show	the	top	20…

Which Resolvers?
Resolver Hits AS AS Name CC
2405:200:1606:672::5 4,178,119 55836 RELIANCEJIO-IN Reliance Jio Infocomm Limited IN
2402:8100:c::8 1,352,024 55644 IDEANET1-IN Idea Cellular Limited IN
2402:8100:c::7 1,238,764 55644 IDEANET1-IN Idea Cellular Limited IN
2407:0:0:2b::5 938,584 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2a::3 936,883 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2a::6 885,322 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2b::6 882,687 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2b::2 882,305 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2a::4 881,604 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2a::5 880,870 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2a::2 877,329 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2b::4 876,723 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:2b::3 876,150 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2402:8100:d::8 616,037 55644 IDEANET1-IN Idea Cellular Limited IN
2402:8100:d::7 426,648 55644 IDEANET1-IN Idea Cellular Limited IN
2407:0:0:9::2 417,184 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:8::2 415,375 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:8::4 414,410 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:9::4 414,226 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID
2407:0:0:9::6 411,993 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID

All	these	resolvers	appears	to	be	unable	to	receive	fragmented	UDP
DNS	responses	– This	is	the	Top	20,	as	measured	by	the	query	count
per	resolver	address

Resolvers in Which Networks?

AS Hits % of Total AS Name CC
15169 7,952,272 17.3% GOOGLE - Google Inc. US
4761 6,521,674 14.2% INDOSAT-INP-AP INDOSAT Internet Network Provider ID

55644 4,313,225 9.4% IDEANET1-IN Idea Cellular Limited IN
22394 4,217,285 9.2% CELLCO - Cellco Partnership DBA Verizon Wireless US
55836 4,179,921 9.1% RELIANCEJIO-IN Reliance Jio Infocomm Limited IN
10507 2,939,364 6.4% SPCS - Sprint Personal Communications Systems US
5650 2,005,583 4.4% FRONTIER-FRTR - Frontier Communications of America US
2516 1,322,228 2.9% KDDI KDDI CORPORATION JP
6128 1,275,278 2.8% CABLE-NET-1 - Cablevision Systems Corp. US

32934 1,128,751 2.5% FACEBOOK - Facebook US
20115 984,165 2.1% CHARTER-NET-HKY-NC - Charter Communications US
9498 779,603 1.7% BBIL-AP BHARTI Airtel Ltd. IN

20057 438,137 1.0% ATT-MOBILITY-LLC-AS20057 - AT&T Mobility LLC US
17813 398,404 0.9% MTNL-AP Mahanagar Telephone Nigam Ltd. IN
2527 397,832 0.9% SO-NET So-net Entertainment Corporation JP

45458 276,963 0.6% SBN-AWN-AS-02-AP SBN-ISP/AWN-ISP and SBN-NIX/AWN-NIX TH
6167 263,583 0.6% CELLCO-PART - Cellco Partnership DBA Verizon Wireless US
8708 255,958 0.6% RCS-RDS 73-75 Dr. Staicovici RO

38091 255,930 0.6% HELLONET-AS-KR CJ-HELLOVISION KR
18101 168,164 0.4% Reliance Communications DAKC MUMBAI IN

This	is	the	total	per	origin	AS	of	those	resolvers	that	appear	to	be	unable	
to	receive	fragmented	UDP	DNS	responses.	This	is	the	Top	20,	as	measured	
by	the	query	count	per	origin	AS

What about TCP and Fragmentation?

Let’s	try	the	same	approach:
• Set	up	an	ad-based	measurement	using	a	customised IPv6	packet	handler
• Pass	all	TCP	responses	through	a	packet	fragmenter
• Use	a	packet	capture	to	see	if	the	fragmented	TCP	segment	was	ACKed or	not

What about TCP and Fragmentation?

1,961,561	distinct	IPv6	end	point	addresses
434,971	failed to	receive Fragmented IPv6	packets

22%	failure rate

Where are TCP e-2-e drops?

Top	15	networks	with	highest	Fragmented	IPv6	Drop	Rates

	 AS	 Samples	 Failure	
Rate	

AS	Name	 CC	

	 3598	 4,762	 99.4%	 MICROSOFT-CORP-AS	-	Microsoft	Corporation	 US	
	 15169	 6,426	 98.9%	 GOOGLE	-	Google	Inc.	 US	
	 24961	 252	 98.4%	 MYLOC-AS		 DE	
	 6621	 4,431	 92.8%	 HNS-DIRECPC	-	Hughes	Network	Systems	 US	
	 131222	 595	 89.1%	 MTS-INDIA-IN	334,	Udyog,	Vihar	 IN	
	 38229	 260	 86.5%	 LEARN-LK	Lanka	Education	&	Research	Network	 LK	
	 6939	 106,057	 85.2%	 HURRICANE	-	Hurricane	Electric	 US	
	 852	 4,552	 84.1%	 ASN852	-	TELUS	Communications	Inc.	 CA	
	 32934	 359	 79.7%	 FACEBOOK	-	Facebook	 US	
	 54115	 128	 78.9%	 FACEBOOK-CORP	-	Facebook	Inc	 US	
	 1312	 122	 76.2%	 Virginia	Polytechnic	Institute	and	State	Univ.	 US	
	 22394	 109,333	 73.2%	 CELLCO	-	Cellco	Partnership	DBA	Verizon	Wireless	 US	
	 5603	 1,938	 69.3%	 SIOL-NET	 SI	
	 4134	 171	 69.0%	 CHINANET-BACKBONE	No.31	 CN	
	 20845	 272	 68.4%	 DIGICABLE		 HU	
	

Why do we see these high packet
drop rates?
Two	major	factors	appear	to	lie	behind	this	failure	rate:
• Network	equipment	dropping	IPv6	packets	with	Extension	Headers
• Firewalls	dropping	Fragmented	packets

Why do we see these high packet
drop rates?
Two	major	factors	appear	to	lie	behind	this	failure	rate:
• Network	equipment	dropping	IPv6	packets	with	Extension	Headers
• Firewalls	dropping	Fragmented	packets

What to do?

Accepting	a	future	IPv6-only	Internet	means	we	are	going	to	have	to	
take	the	problem	of	IPv6	Fragmentation	seriously
• Because	relying	on	IPv4	as	a	backup	is	a	hack	with	an	indeterminate	future!

Which	means	that	we	need	to	figure	out	how	to	change	the	appalling	
drop	rate	for	fragmented	IPv6	packets	both	in	the	DNS	and	in	end-to-
end	paths	in	the	net

Should	we	try	and	fix	the	network	problem	or	try	to	work	around	it?

What can we do about it?

Fix	it!	

Get	all	the	deployed	routers,	switches	and	firewalls	and	related	
network	middleware	to	accept	packets	with	IPv6	Fragmentation	
Headers

What can we do about it?

Change	it!
Change	the	way	in	which	IPv6	manages	IP	fragmentation	and	the	
use	of	Extension	Headers	as	Fragmentation	Control	fields

What can we do about it?

Avoid	it!
Change	application	behaviour so	as	to	avoid	the	use	of	packet	
fragmentation	completely

Pick one?

All	of	these	options	have	a	certain	level	of	pain,	cost	and	potential	
inconvenience

Its	hard	to	work	out	what	is	the	best	course	of	action,	but	it	seems	like	
a	lot	of	extra	effort	if	we	take	on	all	three	at	once!

For TCP

Working	around	this	issue	in	TCP	can	be	as	simple	as	a	very	careful	
selection	of	a	default	IPv6	TCP	MSS
• Large	enough	enough	to	offer	a	tolerable	data	carriage	efficiency
• Small	enough	to	avoid	Path	MTU	issues

And	perhaps	you	might	want	to	to	support	TCP	path	MTU	discovery	
(RFC	4281)

For UDP

• Working	around	this	issue	can	be	challenging	with	UDP
• ICMPv6	PTB	filtering	causes	silence
• Fragment	drop	is	silent

• An	effort	to	work	around	this	necessarily	involves	application-level	
adaptation	to	pass	large	responses	without	relying	on	UDP	packet	
fragmentation

Large DNS Responses and IPv6

Change	the	protocol	behaviour?
• Shift	Additional	Records	into	additional	explicit	UDP	query/response	transactions	
rather	than	bloating	the	original	DNS	response

• Perform	UDP	MTU	discovery	using	EDNS(0)	UDP	Buffer	Size	variations	as	a	probe
• Add	a	truncated	minimal	UDP	response	to	trail	a	fragmented	response	(ATR)

Change	the	transport?
• DNS	over	TCP	by	default
• DNS	over	TLS	over	TCP	by	default
• DNS	over	QUIC
• Devise	some	new	DNS	framing	protocol	that	uses	multiple	packets	instead	of	
fragmentation

Where now?

• We	have	a	decent	idea	of	the	problem	space	we	need	to	resolve
• We’d	prefer	a	plan	that	allows	each	of	us	to	work	independently	
rather	than	a	large	scale	orchestrated	common	change
• We’re	not	sure	we	can	clean	up	all	the	ICMPv6	filters	and	EH	packet	
droppers	in	the	IPv6	network
• And	it	sure	seems	a	bit	late	in	the	day	to	contemplate	IPv6	protocol	
changes
• Which	means	that	we	are	probably	looking	at	working	around	the	
problem	by	changing	the	behaviour of	applications	

What do the RFC’s say?

What do the RFC’s say?

What do the RFC’s say?

What do the RFC’s say?

What do the RFC’s say?

Where are we?

• Is	the	root	cause	problem	with	the	way	our	IPv6	networks	handle	
Fragmented	IPv6	packets?
• Or	with	the	way	our	IPv6	networks	handle	IPv6	packets	with	
Extension	Headers?

• The	data	presented	here	suggests	that	EH	drop	could	be	the	more	
significant	issue	here
• Perhaps	we	might	want	to	think	about	advice	to	host	stacks	and	
applications	to	avoid	EH	altogether	on	the	big-I	Internet!

Thanks!

