Who am I talking to?

Who am I talking to?

What's the Problem?

Which Bank? My Bank!

it looks like my bank? But is it my bank?

The Question:

How do you know that you are really going to where you thought you were going to?

it looks like my bank? But is it my bank?

A Clue!

A Clue!

Also, how can you keep your session a secret from wire(less) snoopers?

Why is this important?

Because it may not be your bank that you are providing your credentials to

The connection may not be as secure as you might like it to be

Because sometimes...

Opening the Connection: First Steps

\$ dig -x 23.77.138.30 +short
a23-77-138-30.deploy.static.akamaitechnologies.com.

That's not an iP addresses that was allocated to the Commonwealth Bank!

The Commonwealth Bank of Australia has been assigned the address blocks: 140.168.0.0 - 140.168.255.255 and 203.17.185.0 - 203.17.185.255

\$ dig -x 23.77.138.30 +short
a23-77-138-30.deploy.static.akamaitechnologies.com.

That's an Akamai address block

And i am NOT a customer of the internet Bank of Akamai!

Why should my browser trust that 23.77.138.30 is really the "proper" web site for the Commonwealth Bank of Australia, and not some dastardly evil scam designed to steal my passwords and my money?

A tricker question...

How can my browser tell the difference between an intended truth and a lie?

Secure Connections using TLS 1.2

https://rhsecurity.wordpress.com/tag/tls/

Secure Connections using TLS 1.2

Secure Connections using TLS 1.2

Domain Name Certification

- The Commonwealth Bank of Australia has generated a key pair
- And they passed a certificate signing request to a company called "Symantec"
- Who was willing to vouch (in a certificate) that the entity who goes by the domain name of <u>www.commbank.com.au</u> also has a certain public key value
- So if I can associate this public key with a connection then I have a high degree of confidence that I've connected to an entity that is able to demonstrate knowledge of the private key for <u>www.commbank.com.au</u>, as long as I am prepared to trust Symantec and the certificates that they issue
- Symantec NEVER lie!

Domain Name Certification

- The Commonwealth Bank of Australia has generated a key pair
- And they passed a certificate signing request to a company called "Symantec"
- Who was willing to vouch (in a certificate) that the entity who goes by the domain name of www.commbank.com.au also has a certain public key value
- So if I can associate this public key with a connection then I have a high degree of confidence that I've connected to an entity that is able to demonstrate knowledge of the private key for <u>www.commbank.com.au</u>, as long as I am prepared to trust Symantec and the certificates that they issue Why should i trust them?
- Symantec NEVER lie!

Local Trust

	Click to unlock the Sy	stem Ro	ots kevchain.				Q, Search	
		stem Ru	ots keychain.				Q Search	
	Keychains		AAA Certificate Services					
	login	0	Root certificate authority					
	Directory Services							
14	iCloud		This certificate is valid					
	System							
	System Roots	Name		Kind	Expires	Keychain		
		-	ensegneen en ee					
				certificate	25 Oct 2036, 7:36:00 PM	System Roots		
		11		certificate	4 Aug 2037, 11:34:04 PM	System Roots		
		1 22	SwissSign Silver CA - G2	certificate	25 Oct 2036, 7:32:46 PM	System Roots		
			SwissSign Silver Root CA - G3	certificate	4 Aug 2037, 11:19:14 PM	System Roots		
		100 A	Symantec Class 1 Public Primary Certification Authority - G4	certificate	19 Jan 2038, 10:59:59 AM	System Roots		
		11			2 Dec 2037, 10:59:59 AM	System Roots		
		11	Symantec Class 2 Public Primary Certification Authority - G4	certificate	19 Jan 2038, 10:59:59 AM	System Roots		
		1	Symantec Class 2 Public Primary Certification 1 and 10 or	Continuence		System Roots		
		13	Synamee class 3 Public Primary Certification Authority - G4	certificate	2 Dec 2037, 10:59:59 AM	System Roots		
_	ッく	1	Symantec Class 3 Public Primary Certification Authority - G6	certificate	2 Dec 2037, 10:59:59 AM	System Roots		
			T-TeleSec GlobalRoot Class 2	oortificato	2 Oct 2033, 10:59:59 AM	System Rests		
			T-TeleSec Global Root Class 2 T-TeleSec Global Root Class 3	certificate	2 Oct 2033, 10:59:59 AM 2 Oct 2033, 10:59:59 AM	System Roots		
						System Roots		
			TC TrustCenter Class 2 CA II	certificate	1 Jan 2026, 9:59:59 AM	System Roots		
	gory		TC TrustCenter Class 3 CA II	certificate	1 Jan 2026, 9:59:59 AM	System Roots		
	s		TC TrustCenter Class 4 CA II	certificate	1 Jan 2026, 9:59:59 AM	System Roots		
	irds	1	TC TrustCenter Universal CA I	certificate	1 Jan 2026, 9:59:59 AM	System Roots		
	Notes	1	TC TrustCenter Universal CA II	certificate	1 Jan 2031, 9:59:59 AM	System Roots		
		11	TC TrustCenter Universal CA III	certificate	1 Jan 2030, 10:59:59 AM	System Roots		
	tificates	1	TeliaSonera Root CA v1	certificate	18 Oct 2032, 11:00:50 PM	System Roots		
		1 11	thawte Primary Root CA	certificate	17 Jul 2036, 9:59:59 AM	System Roots		
	ates		thawte Primary Root CA - G2	certificate	19 Jan 2038, 10:59:59 AM	System Roots		
		1 27	thawte Primary Root CA - G3	certificate	2 Dec 2037, 10:59:59 AM	System Roots		
			TRUST2408 OCES Primary CA	certificate	4 Dec 2037, 12:11:34 AM	System Roots		
		1 11	Trusted Certificate Services	certificate	1 Jan 2029, 10:59:59 AM	System Roots		
		-	Trustis FPS Root CA	certificate	21 Jan 2024, 10:36:54 PM	System Roots		
		100	TÜBİTAK UEKAE Kök Sertifika Hizmet Sağlayıcısı - Sürüm 3	certificate	21 Aug 2017, 9:37:07 PM	System Roots		
			TÜRKTRUST Elektronik Sertifika Hizmet Sağlayıcısı	certificate	23 Dec 2017, 5:37:19 AM	System Roots		
		-	TWCA Global Root CA	certificate	1 Jan 2031, 2:59:59 AM	System Roots		
			TWCA Root Certification Authority	certificate	1 Jan 2031, 2:59:59 AM	System Roots		
		-	UCA Global Root	certificate	31 Dec 2037, 11:00:00 AM	System Roots		
			UCA Root	certificate	31 Dec 2029, 11:00:00 AM	System Roots		
			UTN - DATACorp SGC	certificate	25 Jun 2019, 5:06:30 AM	System Roots		
			UTN-USERFirst-Client Authentication and Email	certificate	10 Jul 2019, 3:36:58 AM	System Roots		
		57	UTN-USERFirst-Hardware	certificate	10 Jul 2019, 4:19:22 AM	System Roots		
				certificate	10 Jul 2019, 4:57:49 AM	System Roots		
		1	UTN-USERFirst-Object	certificate	10 Jul 2019, 4:40:36 AM	System Roots		
				certificate	17 Jul 2036, 9:59:59 AM	System Roots		
				certificate	17 Jul 2036, 9:59:59 AM	System Roots		
				certificate	17 Jul 2036, 9:59:59 AM	System Roots		
			VeriSign Class 3 Public Primary Certification Authority - G4	certificate	19 Jan 2038, 10:59:59 AM	System Roots		
				certificate	17 Jul 2036, 9:59:59 AM	System Roots		
				certificate	17 Jul 2036, 9:59:59 AM	System Roots		
				certificate	2 Dec 2037, 10:59:59 AM	System Roots		
		_		certificate	2 Dec 2037, 10:59:59 AM 24 Jun 2022, 10:16:12 AM	System Roots System Roots		
				certificate	30 Jun 2025, 3:42:42 AM	System Roots		
			VRK Gov. Root CA	certificate	19 Dec 2023, 12:51:08 AM	System Roots		
			WellsSecure Public Root Certificate Authority	certificate	14 Dec 2022, 11:07:54 AM	System Roots		
		1	XRamp Global Certification Authority	certificate	1 Jan 2035, 4:37:19 PM	System Roots		

The cert i'm being asked to trust was issued by a certification authority that my browser already trusts - so i trust that cert!

Local Trust or Local Credulity*?

```
That's a big list of people to
Trust
```

Are they all trustable?

cre·du·li·ty /krəˈd(y)oolədē/

*

a tendency to be too ready to believe that something is real or true.

You have certificates on file that identify these certificate authorities:		
Certificate Name	Security Device	E
certSIGN ROOT CA	Builtin Object Token	
China Financial Certification Authority		
CFCA EV ROOT	Builtin Object Token	
China Internet Network Information Center		
China Internet Network Information Center EV Certificates Ro	ot Builtin Object Token	
Chunghwa Telecom Co., Ltd.		
ePKI Root Certification Authority	Builtin Object Token	
V CNNIC		
CNNIC ROOT	Builtin Object Token	
COMODO CA Limited		
COMODO ECC Certification Authority	Builtin Object Token	
COMODO Certification Authority	Builtin Object Token	
COMODO RSA Certification Authority	Builtin Object Token	
AAA Certificate Services	Builtin Object Token	
Secure Certificate Services	Builtin Object Token	
Trusted Certificate Services	Builtin Object Token	
COMODO ECC Domain Validation Secure Server CA 2	Software Security Device	
COMODO RSA Domain Validation Secure Server CA	Software Security Device	
COMODO High Assurance Secure Server CA	Software Security Device	
▼ ComSign		
ComSign CA	Builtin Object Token	
ComSign Secured CA	Builtin Object Token	
Cybertrust, Inc		
Cybertrust Global Root	Builtin Object Token	
D-Trust GmbH		
D-TRUST Root Class 3 CA 2 EV 2009	Builtin Object Token	
D-TRUST Root Class 3 CA 2 2009	Builtin Object Token	
Total Inc.		
iDRAC6 default certificate	Software Security Device	
Deutsche Telekom AG		
Deutsche Telekom Root CA 2	Builtin Object Token	
Deutscher Sparkassen Verlag GmbH		
S-TRUST Authentication and Encryption Root CA 2005:PN	Builtin Object Token	
S-TRUST Universal Root CA	Builtin Object Token	
Thimyotis		
Certigna	Builtin Object Token	
DigiCert Inc		
DigiCert Trusted Root G4	Builtin Object Token	
DigiCert Global Root CA	Builtin Object Token	
DigiCert Assured ID Root G3	Builtin Object Token	

Local Trust or Local Credulity*?

That's a big list of people to Trust

Are they all trustable? Not! Evidently

cre·du·li·ty

/krəˈd(y)oolədē/

noun

a tendency to be too ready to believe that something is real or true.

Certi	ificate Name		Security Device					
	certSIGN ROOT CA		Builtin Object Token					
▼ 0	China Financial Certificatio	on Authority						
	CFCA EV ROOT		Builtin Object Token					
▼ (China Internet Network In							
		Information Center FV Certificates Roo	at Ruiltin Obiect Token					
• (Chunghwa Telecon		A A ①					
₹ (Google Online Security Blog: Maintaining digital certificate security					
	CNNIC ROOT							
	COMODO CA Limit							
	COMODO ECC (
	COMODO Certif							
	COMODO RSA C	Maintaining di	igita certificate security					
	AAA Certificate	Manntanning ui	igital certificate security					
	Secure Certifica Trusted Certific							
	COMODO ECC I		D15 G+1 106 💟					
	COMODO RSA E	Posted: Monday, March 23, 20						
	COMODO High							
- (ComSign							
	ComSign CA	Posted by Adam Langley,	Security Engineer					
	ComSign Secure							
v (Cybertrust, Inc		e became aware of unauthorized digital certificates for several Google domains. The					
	Cybertrust Glob	certificates were issued by	y an intermediate certificate authority apparently held by a company called MCS					
▼ D	D-Trust GmbH	Holdings. This intermediat	to ce tificate was issued by CNNIC.					
	D-TRUST Root		V					
	D-TRUST Root	CNNIC is included in all m	ajor root stores and so the misissued certificates would be trusted by almost all					
₹ [Dell Inc.	browsers and operating sy	stems. Chrome on Windows, OS X, and Linux, ChromeOS, and Firefox 33 and greater					
	iDRAC6 default	would have rejected these	e certificates because of public-key pinning, although misissued certificates for other site					
T	Deutsche Telekom	likely exist.						
	Deutsche Telek							
₹ [Deutscher Sparkas	We promotly alerted CNNI	IC and other major browsers about the incident, and we blocked the MCS Holdings					
	S-TRUST Authe	certificate in Chrome with a CRLSet push. CNNIC responded on the 22nd to explain that they had contra						
	S-TRUST Univer		is that MCS would only issue certificates for domains that they had registered. However					
▼ D	Dhimyotis							
	Certigna		te key in a suitable HSM, MCS installed it in a man-in-the-middle proxy. These devices					
₹ [DigiCert Inc		ons by masquerading as the intended destination and are sometimes used by companie					
	DigiCert Truste		es' secure traffic for monitoring or legal reasons. The employees' computers normally					
	DigiCert Global	0	rust a proxy for it to be able to do this. However, in this case, the presumed proxy was a public CA, which is a serious breach of the CA system. This situation is similar to a					

Local Trust or Local Credulity*?

Certificate Name certSIGN ROOT CA China Financial Certification Authority That's a big list of people to Trust CECA EV ROOT China Internet Network Inform China Internet Network Infe Chunghwa Telecom Co., Ltd. ePKI Root Certifica CNNIC ROOT Are they all trustable? Not! Evidently COMODO CA Limited COMODO ECC Certif COMODO Certification Aut COMODO RSA Certification AAA Certificate Services Secure Certificate Services Trusted Certificate Services COMODO ECC Domain Vali COMODO RSA Domain Valie COMODO High Assurance S ▼ ComSign ComSign CA ComSign Secured CA Cybertrust, Inc
 Cybertrust Global Root ▼ D-Trust GmbH D-TRUST Root Class 3 CA D-TRUST Root Class 3 CA 2 ▼ Dell Inc. iDRAC6 default certificate Deutsche Telekom AG Deutsche Telekom Root CA Deutscher Sparkassen Verlag (S-TRUST Authentication an S-TRUST Universal Root CA * cre·du·li·tv Dhimvotis Certigna /kra'd(v)ooladē/ DigiCert Inc DigiCert Trusted Root G4 noun DigiCert Global Root CA a tendency to be too ready to believe that something is real or true. DigiCert Assured ID Root G View... Edit Trust...

But my bank used Symantec

And Symantec NEVER lies in the certificates they issue

Well, hardly ever

ars technica 🔍 bize it tech science policy cars gaminge culture forums 😑 s

RISK ASSESSMENT —

Already on probation, Symantec issues more illegit HTTPS certificates

At least 108 Symantec certificates threatened the integrity of the encrypted Web.

Enlarge

62

A security researcher has unearthed evidence showing that three browser-trusted certificate authorities (CAs) owned and operated by Symantec improperly issued more than 100 unvalidated transport layer security certificates. In some cases, those certificates made it possible to spoof HTTPS-protected websites. http://arstechnica.com/security/2017/01/alreadyon-probation-symantec-issues-more-illegit-httpscertificates/

Misissued/Suspicious Symantec Certificates

Andrew Ayer | Thu, 19 Jan 2017 13:47:06 -0800

I. Misissued certificates for example.com

On 2016-07-14, Symantec misissued the following certificates for example.com:

https://crt.sh/? sha256=A8F14F52CC1282D7153A13316E7DA39E6AE37B1A10C16288B9024A9B9DC3C4C6

https://crt.sh/? sha256=885956C57FDCF72086907A4B1BC8CA2E46CD90EAD5C061A426CF48A6117BFBFA

https://crt.sh/? sha256=94482136A1400Bc3A1136FECA3E79D4D200E03DD20B245D19F0E78B5679EAF48

https://crt.sh/? sha256=C69AB04C1B20E6FC7861C67476CADDA1DAE7A8DCF6E23E15311C2D2794BFCD11

I confirmed with ICANN, the owner of example.com, that they did not authorize these certificates. These certificates were already revoked at the time I found them.

II. Suspicious certificates for domains containing the word "test"

On 2016-11-15 and 2016-10-26, Symantec issued certificates for various domains containing the word "test" which I strongly suspect were misissued:

Well, hardly ever

● ● ● < > 🗉 🏦 A A 🛈 🚍 🔒 security.googleblog.com/2018/03/distrust-of-symantec-p

Already on probation more illegit HTTPS

DAN GOODIN - 1/21/2017, 8:40 AM

Enlarge

62

A security researcher has unearthe authorities (CAs) owned and operat transport layer security certificates. HTTPS-protected websites.

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Distrust of the Symantec PKI: Immediate action needed by site operators March 7, 2018

Posted by Devon O'Brien, Ryan Sleevi, Emily Stark, Chrome security team

We previously announced plans to deprecate Chrome's trust in the Symantec certificate authority (including Symantec-owned brands like Thawte, VeriSign, Equifax, GeoTrust, and RapidSSL). This post outlines how site operators can determine if they're affected by this deprecation, and if so, what needs to be done and by when. Failure to replace these certificates will result in site breakage in upcoming versions of major browsers, including Chrome.

Chrome 66

If your site is using a SSL/TLS certificate from Symantec that was issued before June 1, 2016, it will stop functioning in Chrome 66, which could already be impacting your users.

If you are uncertain about whether your site is using such a certificate, you can preview these changes in Chrome Canary to see if your site is affected. If connecting to your site displays a certificate error or a warning in DevTools as shown below, you'll need to replace your certificate. You can get a new certificate from any trusted CA, including Digicert, which recently acquired Symantec's CA business.

.com/security/2017/01/alreadyantec-issues-more-illegit-https-

spicious Symantec Certificates

1 2017 13:47:06 -0800

icates for example.com

nteo misissued the following certificates for example.com: <u>B2D7153A13316E7DA39E6AE37B1A10C16288B9024A9B9DC3C4C6</u> <u>F720B6907A4B1BC8CA2E46CD90EAD5C061A426Cr48A6117BFBFA</u>

0BC3A1136FECA3E79D4D200E03DD20B245D19F0E78B5679EAF48

E6FC7861C67476CADDA1DAE7A8DCF6E23E15311C2D2794BFCD11

ANN, the owner of example.com, that they did not tificates. These certificates were already revoked them.

ificates for domains containing the word "test"

016-10-26, Symantec issued certificates for various the word "test" which I strongly suspect were

What's going wrong here?

- The TLS handshake cannot specify **which** CA should be used by the client to validate the digital certificate that describes the server's public key
- The result is that your browser will allow any CA to be used to validate a certificate!
- Which is an exploited weakness in the CA model

What's going wrong here?

- There is no incentive for quality in the CA marketplace
- Why pay more for any certificate when the entire CA structure is only as strong as the weakest CA?
- And you browser trusts a LOT of CAs!
 - About 60 100 CA's
 - About 1,500 Subordinate RA's
 - Operated by 650 different organisations

In a market for security

Where CA's compete with each other for market share And quality offers no protection Than what 'wins' in the market?

Who am I talking to?

What can we do about it?

What can we do about it?

- The problem with "who am I talking to?" lies in the situation of widely distributed trust in the WebPKI CA environment
- How can we improve this situation?

Is this your Certificate?

How can a user be assured that the certificate that they are being presented with, signed and published by a CA that their browser / platform is prepared to trust, is the genuine certificate?

Certificate Transparency

Certificate Transparency is the current response from the CAB Forum

CT is an effort to make the problem **everyone's** problem by requiring all trusted CAs to publish immutable logs of all the certificates they issue

 analogous to blockchain for each CA, but with a centralised authority model
Certificate Transparency

- Make the problem everyone's problem by requiring all trusted CAs to publish all the certificates they issue
- Leave it to the service publisher to figure out if a fake cert has been issued and logged in the CT logs
 - But what then?
 - How does the user figure out whether the service point they are accessing has been attacked with a fake cert?

Certificate Transparency is Naïve!

- CT attempts to set a universal threshold that all CAs must pass in order to be trusted by a browser
- But won't really protect my browsing
 - Inspection of CT logs by third parties is not fast, thorough, timely nor effective
 - And revocation of certs requires browsers to perform revocation checks every time (which they don't)
 - Brief (and even long-held) windows of opportunity for exploits still exist

Pinning: Narrowing the Trust Space

CA / Public Key Pinning

- Communicate to the client which CA / which certificate / which public key to trust for a given service name
- Exactly how to undertake this communication in a way that is tamperproof is the challenge

Coded Browser Pinning

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

transport	urity_state_static.json	Layers 👻 Find 👻 🕻
2	Copyright (c) 2012 The Chromium Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be	
3 4	found in the LICENSE file.	
5	This file contains the HSTS preloaded list in a machine readable format	
	The top-level element is a dictionary with two keys: "pinsets" maps det of certificate pinning to a name and "entries" contains the HSTS detail	
	each host.	.5 101
10		
	"pinsets" is a list of objects. Each object has the following members:	
12	name: (string) the name of the pinset	
13	static_spki_hashes: (list of strings) the set of allowed SPKIs hashes	1
	bad_static_spki_hashes: (optional list of strings) the set of forbidd	len
15		
	report_uri: (optional string) the URI to send violation reports to;	
17	reports will be in the format defined in RFC 7469	
18		
19	For a given pinset, a certificate is accepted if at least one of the	
20	"static_spki_hashes" SPKIs is found in the chain and none of the	
21	"bad_static_spki_hashes" SPKIs are. SPKIs are specified as names, which	1 must
	match up with the file of certificates.	
23		

Coded Browser Pinning

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

 transport_security_state_static.json
 Layers • Find •

 1
 // Copyright (c) 2012 The Chromium Authors. All rights reserved.

 2
 // Use of this source code is governed by a BSD-style license that can be

 3
 // found in the LICENSE file.

 4
 // This file contains the HSTS preloaded list in a machine readable format.

INFOWORLD TECH WATCH By Fahmida Y. Rashid, Senior Writer, InfoWorld | JAN 30, 2017 About |
h
Informed news analysis every weekday

Google moves into the Certificate Authority business

Google doesn't seem to trust the current system, as it has launched its own security certificates

Coded Browser Pinning

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

Google doesn't seem to trust the current system, as it has launched its own security certificates

Content Pinning

НРКР

HTTP Public Key Pinning (HPKP)

Jump to:	Enabling HPKP	Specifications	Browser compatibility	See also	
Web technology for developers > HTTP > HTTP Public Key Pinning (HPKP)			HTTP Public Key Pinning (HPKP) is a security feature that tells a web client to associate a specific cryptographic public key with a certain web server to decrease the risk of MITM attacks with forged certificates.		
Related Topics		ser			

Content Pinning with HPKP

The issues here include

CA migration can become really convoluted There appears to be a Trust on First Use issue A MITM attack could withhold the HPKP record, or even substitute its own

Is the effort worth it? Low deployment numbers suggest otherwise!

The Google Chrome team recently deprecated support for HPKP in Chrome because of its perceived complexity and potential side-effects.

DNS Pinning

Where better to find out the public key associated with a DNSnamed service than to look it up in the DNS?

If you are prepared to believe the DNS to give you an IP address for the service, then why wouldn't you also trust the DNS to give you the right pinning record?

(As long as you are using DNSSEC, of course!)

CAA Pinning

- Use a DNS record to specify which CA(s) may issue a WebPKI certificate for a domain
- Specified in RFC 6844
- It's not clear how CAA protects a user
 - If a user can subvert a CA then its likely that they would also be able to subvert the CA's CAA check
 - Unless the user is also prepared to retrieve and check the CAA record then this appears to largely a palliative measure
 - But if the user checks the CAA record, then why not just use DANE?

DANE Pinning

- Use a DNS server record to:
 - specify which CA(s) may issue a WebPKI certificate for connections to a service

or

 specify which EE public key certificate should be presented to the user when connecting to a service

or

- specify which public key will be used when connecting to a service

DANE Pinning

- Use a DNS server record to:
 - specify which CA(s) may issue a WebPKI certific in procentions to a service
 or
 Note that CAA is used to pin domains in procentions to panel is used to pin
 specify which the DNS while in the Service records in the service records certificate should be presented to the

 - user when connecting to a service

or

- specify which public key will be used when connecting to a service

TLS with DANE

- Client receives server cert in Server Hello
 - Client lookups the DNS for the TLSA Resource Record of the domain name
 - Client validates the presented certificate against the TLSA RR
- Client performs Client Key exchange

TLS Connections

DANE Does DNS via a Browser Extension

Ċ (i)

But...

- DNSSEC as we know it today is just not good enough
- DNSSEC validation should not be outsourced to the recursive resolver - setting the AD bit in a DNS response is not good enough
- A client needs to directly validate the DNSSEC-signed DANE response
 - This requires more DNS queries
 - And this takes (too much) time
 - And we get pushback from browser vendoras

Faster DNSSEC Validation?

RFC 7901 - CHAIN Query Requests in DNS

 Allows a client to make an "omnibus" DNS query to a recursive resolver to retrieve the set of DNSSEC RRs between the QNAME and a trust point in a single DNS transaction

DANE as a TLS Extension?

draft-ietf-tls-dnssec-chain-extension-07

The extension described here allows a TLS client to request that the TLS server return the DNSSEC authentication chain corresponding to its DANE record. If the server is configured for DANE authentication, then it performs the appropriate DNS queries, builds the authentication chain, and returns it to the client. The server will usually use a previously cached authentication chain, but it will need to rebuild it periodically as described in <u>Section 5</u>. The client then authenticates the chain using a pre-configured trust anchor.

This specification is based on Adam Langley's original proposal for serializing DNSSEC authentication chains and delivering them in an X.509 certificate extension [<u>I-D.agl-dane-serializechain</u>]. It modifies the approach by using wire format DNS records in the serialized data (assuming that the data will be prepared and consumed by a DNS-specific library), and by using a TLS extension to deliver the data.

As described in the DANE specification [<u>RFC6698</u>] [<u>RFC7671</u>], this procedure applies to the DANE authentication of X.509 certificates or raw public keys [<u>RFC7250</u>].

TLS + DANE Chain Connections

What now?

It appears that we still need WebPKI certs for the moment, but we need to make them more robust in the face of continued attack

- DANE+DNSSEC could useful in adding assurance to the WebPKI in a role of WebPKI CA pinning
- So far we have not figured out how to reliably catch instances of withholding a DNS TLS extension without paying a DNS query time delay penalty
 - Which implies that DANE TLS extension probably represents one more thing to go wrong without a compelling case that can be made about what it actually manages to do to protect the user
 - Or we can work out a way to catch withholding efficiently

Conclusions

Corrupting a trusted CA is a nightmare scenario for the WebPKI

- DANE appears to offer a natural and compelling alternative to the WebPKI by offering a dynamic system that provides authenticated data to the user that does not rely on expansive trust
- But there are some issues that exist in the DNS, DNSSEC and DANE
 - Registry practices to ensure that there are very robust defences against domain name hijacking are lacking today and will be lacking tomorrow
 - Centralising trust in a single model creates a single point of vulnerability for the entire system
 - The KSK model is fragile
 - Overloading the DNS with large payloads stresses the UDP-based system beyond their viability, but the case to justify shift to DNS over <X> architectures has a limited value proposition outside of DNSSEC/DANE-based use cases

Thanks