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Networking is all about moving 
data

• The way in which data movement is controlled is a key 
characteristic of the network architecture

• The Internet Protocol architecture passed all controls to the 
end systems, and treated the network as a passive packet 
switching environment

• All this is changing again as we see a what could well be a 
new generation of flow control algorithms being adopted in 
the Internet
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Let’s talk about speed…
• How fast can we push a single session 

to move data through the network?
• Session speed is the result of  a 

combination of: 
• available transmission speeds, 
• transmission bit error rate,
• packet sizes
• switching capacity
• end-to-end latency, 
• host buffer size and 
• protocol efficiency

– All of these factors are critical
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The Evolution of Speed
1980’s

– TCP rates of Kilobits per second
1990’s

– TCP rates of Megabits per second
2000’s

– TCP rates of Gigabits per second
2010’s

– TCP rates of Gigabits per second
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Today

• Optical transmission speeds are approaching Terrabit
capacity, while network session speeds are not keeping up
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TCP

• The Transmission Control Protocol is an end-to-end 
protocol that creates a reliable stream protocol from the 
underlying IP datagram device

• TCP operates as an adaptive rate control protocol that 
attempts to operate fairly and efficiently



TCP Design Objectives
To maintain an average flow which is Efficient and Fair
• Efficient:

– Minimise packet loss
– Minimise packet re-ordering
– Do not leave unused path bandwidth on the table!

• Fair:
– Do not crowd out other TCP sessions
– Over time, take an average 1/N of the path capacity when there are N 

other TCP sessions sharing the same path



It’s a Flow Control process

• Think of this as a multi-
flow fluid dynamics 
problem

• Each flow has to gently 
exert pressure on the 
other flows to signal 
them to provide a fair 
share of the network, 
and be responsive to 
the pressure from all 
other flows



TCP Control

• Ideally TCP would send packets at a fair share of 
available network capacity. But the TCP sender has no 
idea what “available network capacity” means.

• So TCP uses ‘rate adaptation’ to probe into network, 
increasing the sending rate until it is ‘too fast’

• Packet drop is the conventional signal of “I’m going too 
fast”



TCP Control

TCP is an ACK Pacing protocol

Data sending rate is matched to the 
ACK arrival rate 



TCP Control

ACK pacing protocols relate to a past network state, not 
necessarily the current network state

– The ACK signal shows the rate of data that left the network at the 
receiver that occurred at ½ RTT back in time

– So if there is data loss in the forward path, the ACK signal of that loss 
is already at least ½ RTT old!
• So TCP should react quickly to ‘bad’ news

– If there is no data loss, that is also old news
• So TCP should react conservatively to ‘good’ news



“Classic TCP” – TCP Reno

• Additive Increase Multiplicative Decrease (AIMD)
– While there is no packet loss, increase the sending rate by one 

segment (MSS) each RTT interval
– If there is packet loss decrease the sending rate by 50% over the 

next  RTT Interval, and halve the sender’s window

• Start Up
– Each RTT interval, double the sending rate
– We call this “slow start” – probably because its anything but slow!!!



Idealised TCP Reno

Time

Slow Start
Rate Doubles
each RTT
Interval

Congestion Avoidance
Rate increases by 1 MSS per RTT
Rate halves on Packet Loss

Notification of Packet Loss 
via Duplicate ACKs causes 
RENO to halve its sending 
rate



TCP RENO and Idealized Queue 
Behaviour

Total Queue Capacity
(Onset of Packet Loss)

Link Capacity Capacity
(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain



TCP and Buffers – the Theory
• When a sender receives a loss signal it repairs the loss and halves its 

sending window
• This halving of the sending window will cause the sender to pause for the 

amount of time to drain half the outstanding data in the network
• Ideally this exactly matches the amount of time taken for the queue to drain
• At the time the queue is drained the sender resumes its sending at half the 

rate (which should be equal to the the bottleneck capacity)
• For this to work, the queue size should equal the delay bandwidth product 

of the link it drives
• All this works with an assumption of a single queue and a single flow



TCP and Buffers – the Theory

Queue formation
Queue drain



TCP and Buffers

• The rule of thumb for buffer size is

Size = (BW ∙ RTT)
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Switching Chip Design TradeOffs

• On-Chip memory is fast, but limited to between ~16M to ~64M
• A chip design can include an interface to external memory banks 

but the memory interface/controller also takes up chip space and 
the external memory is slower

• Between 20% to 60% of switch chip real estate is devoted to 
memory / memory control

• Small memory buffers in switch design allows for larger switch 
fabric implementations on the chip
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Example Switch Design
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The Network Design Dilemma

What are the acceptable tradeoffs here?
– Larger buffers tend to create more efficient outcomes for aggregate 

throughput
– Smaller buffers limit the achievable performance of some protocols
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Buffer Sizing Factors
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Flow Protocol

Number of Flows

Flow Bandwidth x Delay 

Transmission BER

Transmission Jitter

Transmission Capacity

Flow Pacing



Buffer Sizing Factors
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Flow Protocol

Number of Flows

Flow Bandwidth x Delay 

Transmission BER

Transmission Jitter

Transmission Capacity

Flow Pacing

We can change these (possibly)



From 1 to N – Scaling Switching
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• This finding of buffer size relates to a single flow through a 
single bottleneck resource

• What happens with more flows and faster transmission 
system?

• It appears that scaling has non-linear properties



Smaller buffers?

• If 2 flows use a single buffer and they resonate precisely 
then the buffer still needs to be delay-bandwidth size

• If they are precisely out of phase the common buffer 
requirement is reduced by ~25%
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Smaller buffers?
• If 2 flows use a single buffer and they resonate precisely then the buffer still needs to be delay-bandwidth size

• If they are precisely out of phase the common buffer requirement is reduced by ~25%

• What about the case of N de-synchronised flows?

• Stanford 2004 study:
Size = (BW ∙ RTT) / √N

Assuming that the component flows manage to achieve a fair outcome of obtaining 1/N of the resource in a non-synchronised 
manner, then the peak buffer resource is inversely proportionate to the square root of N 
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Protocols and Buffers

• TCP Reno strongly influenced the design assumption that 
BDP-sized buffers are necessary in the Internet

• Which lead to vendors over-provisioning buffers in network 
equipment

• But are there other protocols that can lead to different 
assumptions about buffer sizes? 
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Refinements to RENO
• There have been many efforts to alter RENO’s flow control 

algorithm
• In a loss-based AIMD control system the essential parameters 

are the manner of rate increase and the manner of loss-based 
decrease
– For example: 

MulTCP behaves as it it were N simultaneous TCP sessions: i.e. increase by N segments 
each RTT and rate drop by 1/N upon packet loss

• What about varying the manner of rate increase away from AI?



Enter CUBIC

• CUBIC is designed to be useful for high speed sessions while still 
being ‘fair’ to other sessions and also efficient even at lower speeds

• Rather than probe in a linear manner for the sending rate that triggers 
packet loss, CUBIC uses a non-linear (cubic) search algorithm



CUBIC and Queue formation

Total Queue Capacity
(Onset of Packet Loss)

Link Capacity Capacity
(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain



CUBIC assessment

• Can react quickly to available capacity in the network
• Tends to sit for extended periods in the phase of queue 

formation

• Can react efficiently to long fat pipes and rapidly scale up 
the sending rate

• Operates in a manner that tends to exacerbate ‘buffer bloat’ 
conditions, but also operates efficiently in small buffer 
environments



Can we do even better?
• Lets look at the model of the network once more, and observe that there 

are three ‘states’ of flow management in this network:
– Under-Utilised – where the flow rate is below the link capacity and no queues form
– Over-Utilised – where the flow rate is greater that the link capacity and queues form 
– Saturated – where the queue is filled and packet loss occurs

• Loss-based control systems probe upward to the Saturated point, and back 
off quickly to what they guess is the Under-Utilised state in order to the let 
the queues drain

• But the optimal operational point for any flow is at the point of state change 
from Under to Over-utilised, not at the Saturated point



RTT and Delivery Rate with Queuing

Under-Utilised Over-Utilised Saturated



How to detect the onset of 
queuing?

• By carefully measuring the Round Trip Time!



BBR Design Principles

• Probe the path capacity only intermittently
• Probe the path capacity by increasing the sending rate for a short 

interval and then drop the rate to drain the queue:
– If the RTT of the probe equals the RTT of the previous state then there is 

available path bandwidth that could be utilised
– If the RTT of the probe rises then the path is likely to be at the onset of 

queuing and no further path bandwidth is available

• Do not alter the path bandwidth estimate in response to packet loss
• Pace the sending packets to avoid the need for network buffer rate 

adaptation



Idealised BBR profile

sending rate

network queues



BBR Politeness?

• BBR will probably not constantly pull back when 
simultaneous loss-based protocols exert pressure on the 
path’s queues

• BBR tries to make minimal demands on the queue size, 
and does not rely on a large dynamic range of queue 
occupancy during a flow



From Theory to Practice

• Lets use BBR in the wild
• I’m using iperf3 on Linux platforms (Linode) 

– The platforms are dedicated to these tests

• It’s the Internet
– The networks paths vary between tests
– The cross traffic is highly variable
– No measurement is repeatable to a fine level of detail



Cubic vs BBR over a 12ms RTT 10G 
circuit



Wow!

• That was BRUTAL!
• As soon as BBR started up it collided with CUBIC, and BBR 

startup placed pressure on CUBIC such that CUBIC’s 
congestion window was reduced  close to zero

• At this stage CUBIC’s efforts to restart its congestion 
window appear to collide with BBR’s congestion control 
model, so CUBIC remains suppressed
– The inference is that BBR appears to be operating in steady state 

with an ability to crowd out CUBIC



BBR vs Cubic – second attempt

Same two endpoints, same 
network path across the public 
Internet

Using a long delay path AU to 
Germany via the US



BBR vs Cubic
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The Internet is capable of 
offering a 400Mbps capacity 
path on demand!

In this case BBR is apparently 
operating with filled queues, 
and this crowds out  CUBIC

BBR does not compete well 
with itself, and the two sessions 
oscillate in getting the majority 
share of available path capacity



BBR and Loss 
Recovery
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Packet loss causes 
retransmission that 
appears to occur in 
addition to the stable link 
capacity model used by 
BBR.

Once loss is reduced, BBR 
maintains a more 
consistent sending model



So what can we say about BBR?
It’s “interesting” in so many ways:

– It’s a move away from the more common loss-based flow control 
protocols

– It looks like it will operate very efficiently in a high-speed small-buffer 
world
• High speed small buffer switching chips are far cheaper, but loss-based TCP 

reacts really badly to small buffers by capping its flow rate
– It will operate efficiently over ECMP paths, as it is relatively impervious to 

packet re-ordering
– It also looks as if it will operate efficiently in rate policed environments
– Unlike AIMD systems, it will scale from Kbps to Gbps over long delay 

paths very efficiently
– It resists the conventional network-based traffic control mechanisms



Why use BBR?

• Because it achieves
• Its incredibly efficient

• It makes minimal demands on network buffer capacity 

• It’s fast!



Why not use BBR?

• Because it over achieves!

• The classic question for many Internet technologies is scaling 
– “what if everyone does it?”
– BBR is not a scalable approach in competition with loss-based flows
– It works so well while it is used by just a few users, some of the time
– But when it is active, BBR has the ability to slaughter concurrent 

loss-based flows
– Which sends all the wrong signals to the TCP ecosystem

• The loss-based flows convert to BBR to compete on equal terms
• The network is then a BBR vs BBR environment, which is unstable



Is this BBR experiment a failure?

Is it just too ‘greedy’ and too ‘insensitive’ to other flows to be 
allowed out on the Internet to play?

– Many networks have been provisioned as a response to the 
aggregate behaviours of loss-based TCP congestion control

– BBR changes all those assumptions, and could potentially push 
many networks into sustained instability

– We cannot use the conventional network control mechanisms to 
regulate BBR flows
• Selective packet drop just won’t create back pressure on the flow



Is BBR an outstanding success?
• We can’t achieve speed if we need also large high speed buffers 

in network routers
– Loss-based flow-control systems have a sloppy control loop that is 

always ½ RTT late

• We can use small buffers in switches if we use sender pacing 
coupled with flow control systems that are sensitive to the onset 
of queue formation (rather than being sensitive to packet loss 
resulting from a full queue)

• BBR points to an approach that does not require large buffer 
pools in switches
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Where now with BBR?

BBR 2.0
– Alter BBR’s ‘sensitivity’ to loss rates, so that it does not persist with an 

internal bandwidth delay product (BDP) that exceeds the uncongested BDP
This measure would moderate BBR 1.0’s ability to operate for extended periods with 
very high loss levels

– Improve the dynamic sharing fairness by moderating the Bandwidth Delay 
Product by using an estimated ‘fair’ proportion of the path BDP

– Accommodate the signal distortion caused by ACK stretching middleware
– Place an upper bound on the volume of in-flight data
– Alter the +/- 25% probe factors dynamically (i.e. allow this to be less than 

25% overload)



The new Network Architecture

• We are seeing a shift in end systems to assert edge-centric 
control and hide from network-level active middleware in 
the Internet

• QUIC and BBR are instances of a recent push back from 
the network-level QoS bandwidth control mechanisms, and 
result in greater levels of autonomous control being passed 
back to the end hosts

• For better or worse!
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From “small” to “tiny” Buffers?

• Buffers in a network serve two major purposes:
– smooth sender burstiness
– Multiplexing

• What if all senders ‘paced’ their sending to avoid bursting, and were 
sensitive to the formation of standing queues?

• Then we would likely have a residual multiplexing requirement for 
buffers where:

B >= O(log W)
where W is the average flow window size

This would allow Tbps switches to operate with on-chip memory (10’s Mb) and still 
allow highly efficient network utilisation
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What is all this telling us?

• The Internet still contains a large set of important unsolved 
problems

• And some of our cherished assumptions about network 
design may be mistaken

• Efficiently moving large numbers of large data sets over 
high speed networks requires a different approach to what 
we are doing today
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Questions?


