
Measuring the Effectiveness of
Route Origin Validation

Filtering via Drop Invalids from
the perspective of the End User
using a Technique of Broad Scale

Reachability Measurement
Geoff Huston
APNIC Labs

Measuring RPKI

Geoff Huston
APNIC Labs

Routing Security

What’s “the objective” of routing security?

Routing Security

What’s “the objective” of routing security?
qProtect the routing system from all forms of operator mishaps?
qProtect the routing system from some forms of operator mishaps?
qProtect the routing system from all hostile attacks?
qProtect the routing system from some hostile attacks?
qPrevent the routing of bogus address prefixes?
qPrevent the use of bogus AS’s in the routing system?
qPrevent all forms of synthetic routes from being injected into the routing

system?
qPrevent unauthorised route withdrawal?
qProtect users from being directed along bogus routing paths?

Routing Security

Enforcing rules to ensure that the routes carried in BGP are both
protocol-wise accurate and policy-wise accurate is well beyond the
capabilities of BGP and viable BGP control mechanisms *
Route Origin Validation is designed to prevent BGP speakers from
learning and preferring routes that are not authorised by the prefix
holder
The intent of not preferring unauthorised routes is to prevent users’
traffic from being steered along these bogus routes

* BGP is not a deterministic protocol, but more of a negotiation protocol that attempts to find meta-stable ‘solutions to importer / export policy preferences simultaneously. Where the
policies are incompatible the BGP “solution” is not necessarily reached deterministically and different outcomes will be seen at different times – see “BGP Wedgies” for an illustration of
this form of indeterminism

Routing Security

What’s “the objective” of routing security?
qProtect the routing system from all forms of operator mishaps?
qProtect the routing system from some forms of operator mishaps?
qProtect the routing system from all hostile attacks?
qProtect the routing system from some hostile attacks?
qPrevent the routing of bogus address prefixes?
qPrevent the use of bogus AS’s in the routing system?
qPrevent all forms of synthetic routes from being injected into the routing

system?
qPrevent unauthorised route withdrawal?
qProtect users from being directed along bogus routing paths?

Our Objective

• To measure the “impact” of invalid route filtering on users
• The question we want to answer here is user-centric:
• What proportion of users can’t reach a destination when the destination

route is invalid according to ROV?

• We’d like to continue this as a long term whole-of-Internet
measurement

Measurement Approach

If we are looking at the effectiveness of the secure routing system in
blocking the ability to direct users along bogus routing paths, then this
suggests a measurement approach:
• Set up a bogus (RPKI RoV-invalid) routing path as the only route to a

prefix
• Direct a very large set of users from across the Internet to try to reach

a web server located at this prefix
• Use a ‘control’ of a valid routing path to the same destination
• Measure and compare

Methodology

qSet up a prefix and AS in a delegated RPKI repository
• We used the Krill package to achieve this
• It Just Worked! tm

https://www.nlnetlabs.nl/projects/rpki/krill/

Counting RPKI Clients

Number of Unique IP addresses per day
performing a fetch from our RPKI
repository

Methodology

qSet a prefix and AS in a delegated RPKI repository
qRegularly revoke and re-issue ROAs that flip the validity state

between valid and invalid states

Flip to "good" at 00:00 on Fri/Mon/Thu
0 0 * * 1,4,5 /home/krill/.cargo/bin/krillc roas update --delta ./delta-in.txt > /tmp/krillc-in.log 2>&1
Flip to "bad" at 12:00 on sat/Tue/Thu
0 12 * * 2,4,6 /home/krill/.cargo/bin/krillc roas update --delta ./delta-out.txt > /tmp/krillc-out.log 2>&1

These two scripts flip the ROA valid state between ‘good’ and’bad’ origin ASNs for the prifix

Methodology

qSet a prefix and AS in a delegated RPKI repository
qRegularly revoke and re-issue ROAs that flip the validity state

between valid and invalid states
qAnycast the prefix and AS pair in a number of locations across the

Internet
• We are using 3 locations: US (LA), DE (FRA), SG
• We are using 3 transit providers
• The server at this location delivers 1x1 blots
• This is IPv4-only at this point

Methodology

qSet a prefix and AS in a delegated RPKI repository
qRegularly revoke and re-issue ROAs that flip the validity state

between valid and invalid states
qAnycast the prefix and AS pair in a number of locations across the

Internet
qLoad a unique URL that maps to the destination into a measurement

script
• The DNS component uses HTTPS and a unique DNS label component to try

and ensure that the HTTP FETCH is not intercepted by middleware proxies

Methodology

qSet a prefix and AS in a delegated RPKI repository
qRegularly revoke and re-issue ROAs that flip the validity state

between valid and invalid states
qAnycast the prefix and AS pair in a number of locations across the

Internet
qLoad a unique URL that maps to the destination into a measurement

script
qFeed the script into the advertising systems
• This is part of the larger APNIC Labs ad-based measurement system – this test

is one URL in a larger collection of URLs

Methodology

qSet a prefix and AS in a delegated RPKI repository
qRegularly revoke and re-issue ROAs that flip the validity state

between valid and invalid states
qAnycast the prefix and AS pair in a number of locations across the

Internet
qLoad a unique URL that maps to the destination into a measurement

script
qFeed the script into the advertising systems
qCollect and analyse data
• We use the user record of successful fetch to avoid zombies and stalkers

Flipping ROA states
• What’s a good frequency to flip states?

• How long does it take for the routing system as a whole to learn that a previously
valid route is now invalid? And how long for the inverse invalid to valid transition

• Validity / Invalidity is determined by what is published at the RPKI
publication point
• Each transition is marked by revocation of the previous ROA’s EE certificate and the

issuing of a new ROA and EE certificate

• What’s the re-query interval for clients of a RPKI publication point?
• There is no standard-defined re-query interval so implementors have exercised their

creativity!

RPKI Pub Point Re-Query Intervals

120 seconds is popular

600 seconds is also well used

as is one hour

We are looking here at the average elapsed time between successive visits to
the RPKI publication point server from the same IP address (krill logs)

RPKI Pub Point Re-Query
Intervals (first hour)

120 seconds is popular

600 seconds is also well used

as is one hour

What’s this?

Re-Query – Cumulative
Distribution

Within 2 hours we see
75% of clients perform
a requery

Why the lag?

https://grafana.wikimedia.org/d/UwUa77GZk/rpki?panelId=59
&fullscreen&orgId=1&from=now-30d&to=now

Clients can take a significant
amount of time to complete a
pass through the entire RPKI
distributed repository set,
which makes the entire system
sluggish to respond to changes

We use 12 and 36 hour held
states for ROA validity

The route object validity state cycles over a 7 day period in a
set of 12 and 36 hour intervals

We used 12 and 36 hour held
states

view from stat.ripe.net

We used 12 and 36 hour held
states

BGP Play view of the
routing changes

We used 12 and 36 hour states

This shows the per-second fetch rate
when the route is valid (green) and
invalid (red) over a 7 day window

The route validity switches are clearly
visible

Transition – Valid to Invalid
It takes some 30 minutes for the valid to
invalid transition to take effect in this
measurement

It appears that this is a combination of slow
re-query rates at the RPKI publication point
and some delays in making changes to the
filters being fed into the routers

This system is dependant on the last transit
ISP to withdraw

Transition – Invalid to Valid
It takes some 5 minutes for the invalid to
valid transition to take effect in this
measurement

This system is dependant on the first transit
ISP to announce, so it tracks the fastest
system to react

RPKI “sweep” software

• There is a mix of 2, 10 and 60 minute timers being used
• 2 minutes seems like a lot of thrashing with little in the way of

outcome – the responsiveness of the system is held back by those
clients using longer re-query timers
• 60 minutes seems too slow

(I’d go with a 10 minute query timer as a compromise here)

User impact of RPKI filtering

At 16% of users that’s a
surprisingly large impact for
a very recent technology

User impact of RPKI filtering

Network Turning on Drop
Invalids

Transit State Change

Multiple Transits ?

Why?

This map is a mix of two factors
• Networks that perform invalid route filtering

Why?

This map is a mix of two factors
• Networks that perform invalid route filtering
and
• Network that do not filter themselves, but are customers of transit providers

who filter

In either case the basic RPKI RoV objective is achieved, in that the users
within these ISP networks are not exposed to invalid route objects

Next Steps for Measurement

• Could we attempt selective traceroute from the anycast servers to
identify the networks that are performing the RoV invalid filter drop?
• Should we perform further analysis of BGP route updates in route

collectors to determine route withdrawal and announcement
patterns when RPKI validity changes?

Questions we might want to
think about
• Is it necessary for every AS to operate RPKI ROV infrastructure and

filter invalid routes?
• If not, what’s the minimal set of filtering networks that could provide

similar levels of filtering for the Internet as a whole
• What’s the marginal benefit of stub AS performing RPKI ROV filtering?
• Should a stub AS RPKI ROV only filter its own announcements?
• What’s more important: protecting others from your operational mishaps or

protecting yourself from the mishaps of others?

What are we trying to achieve
here?
• If this is a routing protection measure then what are you trying to

protect? From whom? From what threat?
• If this is a user protection measure then the issue of route filtering is

an issue for transit providers, not stub networks
• A stub network should generate ROAs for its routes, but there is far less of an

incentive to perform RoV invalid filtering if the stub’s upstreams / IXs are
already performing this filtering
• Is it more important for IXs and Transits to perform drop-invalids than for

stubs?

Thanks!

