
QUIC

Geoff Huston AM

APNIC

QUIC is

QUIC is a mashup of TCP and TLS

HTTP
Multi-stream

TLS
Session Encryption

TCP
Data stream integrity
Congestion Control

HTTP

QUIC
Multi-stream

Encryption
Data stream integrity
Congestion Control

UDP

IP

HTTP/2
QUIC

HTTP/3

e2e encrypted

e2e encrypted

TCP is..

A transport protocol that constructs a reliable full duplex adaptive
streaming service on top of an unreliable IP datagram service
• Uses a coordinated state between the two end systems without any network

intervention or mediation
• Uses a sliding window to allow lost data to be resent
• Uses ACK-clocking to regulate the sending behaviour to match network path

capacity estimate

TCP is NOT…

• Fully independent of the underlying platform’s transport services
• Fully multi-stream (it has head-of-line blocking)
• Fully multi-path (yes, MP-TCP exists, but there are some outstanding issues here!)

• Address agile
• Free from on-the-wire network intervention (TCP control parameters

are sent in the clear)
• Has e2e encryption as a second step / afterthought
• Everything for everyone – it relies on the application to perform data

framing and in-band control

QUIC IS…

Constructed upon a transport level framing protocol that offers applications
access to the basic IP datagram services offered by IP through the use of
UDP

All other transport services (data integrity, session control, congestion control,
encryption) are shifted upwards in the protocol stack towards the application. A host
platform may provide a QUIC API as part of the host library, but the application can
also provide its own QUIC service independent of the host

QUIC is…

So much more than just “encrypted TCP over UDP”
• Support for multi-stream multiplexing that avoids head-of-line blocking and

exploits a shared congestion and encryption state
• Faster - Combines transport and encryption setup exchange in a single 3-way

exchange at session start, and supports fast reopen
• Customisable - QUIC implementations can use individual flow controllers per

flow
• QUIC places its transport control fields inside the encryption envelope, so

QUIC features minimal exposure to the network
• Supports record and Remote Procedure Call service models as well as bit-

streaming and datagram services

QUIC is address agile

• NATs are potentially hostile to QUIC because of the outer UDP
wrapper
• A NAT may rebind a QUIC session (shift the externally visible address/port of a

host during a session), as NATs are not generally aware of UDP streaming
states

• QUIC uses a persistent “connection ID”
• If a host receives a QUIC frame with the same connection ID and a new source

IP address / port it will send a challenge by way of a random value that should
be echoed back. This is all performed within the e2e encryption envelope.
That way a QUIC e2e session can map into new address/port associations on
the fly

QUIC also…

• Is IP fragmentation intolerant – QUIC uses PMTUD, or defaults to
1,200 octet UDP payloads
• Never retransmits a QUIC packet – retransmitted data is sent in the

next QUIC packet number – this avoids ambiguity about packet
retransmission
• Extends TCP SACK to 256 packet number ranges (up from 3 in TCP

SACK)
• Separately encrypts each QUIC packet – no inter-packet dependencies

on decryption
• May load multiple QUIC packets in a single UDP frame

QUIC flow structuring

A QUIC connection is broken into
“streams” which are reliable data flows –
each stream performs stream-based loss
recovery, congestion control, and
relative stream scheduling for bandwidth
allocation

QUIC also supports unreliable encrypted
datagram delivery

QUIC and Remote Procedure Calls

• By associating each RPC request/reply with a new stream, QUIC can
support asynchronous RPC transactions using reliable messaging
• This can handle lost, mis-ordered and duplicated RPC messages without

common blocking or throttling

QUIC and Load Balancing

• This assumes that a front-end load balancer is capable of performing load
balancing on UDP flows using the UDP connection 5-tuple
• If the remote end performs NAT rebinding the load balancer will be thrown

by this shift, and it has no direct visibility into the e2e session to uncover
the connection ID
• Using UDP to carry sustained high-volume streams may not match the

internal optimisations used in server content delivery networks

NAT Load Balancer

Server A

Server B

Source Address A

Source Address B

NAT re-binding

QUIC and Load Balancing

• This assumes that a front-end load balancer is capable of performing load
balancing on UDP flows using the UDP connection 5-tuple
• If the remote end performs NAT rebinding the load balancer will be thrown

by this shift, and it has no direct visibility into the e2e session to uncover
the connection ID
• Using UDP to carry sustained high-volume streams may not match the

internal optimisations used in server content delivery networks

• If we really want large scale QUIC with front-end load balancing and if we
still need to tolerate NATs then we will need to think about how the end
point can share the connection ID state with its front-end load balancer,
or how to terminate the QUIC session in the front-end and use a second
session to a selected server

QUIC and DOS

• Very little lies outside the encryption envelope in QUIC
• Which means all incoming packets addressed to the QUIC port need

to be decrypted
• But the QUIC session uses symmetric crypto so the packet decode

overhead is far smaller than an asymmetric crypto load for the same
packet rate

• It’s not the best answer, but it’s not disastrous either!

QUIC is:

• A logical evolutionary step for transport services, providing more
flexibility, faster connection setup, and a larger set of transport
services

• It’s what we should expect from a capable modern transport
protocol!

Measuring QUIC

Triggering QUIC in HTTP

Use the DNS to trigger QUIC:
• Set up an HTTPS record for each server name, with value: alpn=“h3”

Use content-level controls to trigger QUIC:
• Add Alt-Svc: h3=“:443” to the HTML headers

(This second method requires a subsequent query in a distinct HTTP session to allow the client
to use the Alt-Svc capability.)

Triggering QUIC in HTTP

Use the DNS to trigger QUIC:
• Set up an HTTPS record for each server name, with value: alpn=“h3”

Use content-level controls to trigger QUIC:
• Add Alt-Svc: h3=“:443” to the HTML headers

First Fetch

Second Fetch

Setting Expectations

• Chrome has a dominant share of browser instances - roughly, some 65%*
• And Chrome has been supporting a switch to QUIC via the Alt-Svc

directive since 2020

* Oberlo.com

Setting Expectations

• Chrome has a dominant share of browser instances - roughly, some 65%*
• And Chrome has been supporting a switch to QUIC via the Alt-Svc

directive since 2020

• And Apple Safari is now supporting QUIC, using the DNS apln directive
• So a QUIC-aware server platform should be seeing some 85% of its

sessions using QUIC – right?

* https://gs.statcounter.com/browser-market-share

Cloudflare’s Numbers
Cloudflare reports a far lower level of QUIC use

APNIC’s QUIC measurement

• We have configured a server to support QUIC sessions
• We support both DNS and content triggers
• The content trigger requires us to measure across multiple fetches

within each measurement
• Which means that we need to carefully set the HTTP/2 session keepalive

timer to make this work as intended

Server Session Keepalive Timers

• After much searching under many rocks we were advised that a
server keepalive timer value of 1 second is too small, as the server
drops the QUIC connection too aggressively and the browser client
then drops back to using HTTP/2
• The default value of 65 seconds for the server keepalive interval

seems to be too long
• So we used a server keepalive value of 20 seconds…

QUIC Use

Playing with keepalive
parameters!

First Fetch – mainly Safari clients

Subsequent Fetches – mainly Chrome clients

QUIC Use – July 2023

QUIC Use – May 2024

Network Traffic Volume

Presentation to RIPE 86: The New Encrypted Protocol Stack and How to Deal with it – Bart van de Velde, Cisco

Why is QUIC important?

Because QUIC is fast
Because QUIC encrypts everything
• No visible transport control settings
• No visible Server Name Indication in the crypto-setup
• No visible traffic profile other than inter-packet timing
• And if you use a MASQUE-based VPN then there no residual visibility!

Because QUIC is an application capability
• QUIC can interact with the platform through the UDP API, so all of QUIC can

be implemented within the application. This gives the application more
control over its service outcomes and reduces external dependencies

What does this mean for TCP?

It’s not looking all that good for TCP’s prospects
• QUIC not only does faster start up, but it supports multi-channel in a

frictionless manner
• QUIC resists network operator efforts to perform traffic shaping

through direct manipulation of TCP control parameters
• QUIC allows the application service provider to control the congestion

behaviour of its sessions

What does this mean for TCP?

Normally you would expect any transition from TCP to QUIC to take forever
BUT:
• QUIC gives benefit to adopters through more responsive web services
• QUIC does a better job of hiding content, which is a benefit to the service

operator
• QUIC has fewer external dependencies
• QUIC can be deployed on a piecemeal basis

So it all may be over for TCP in a very small number of years!

What does this mean for the
Internet?
• IP was a network protocol that provided services to attached

devices
• The network service model used by IP was minimal

• Packets may be dropped, fragmented, duplicated, corrupted and/or
reordered on their path through the network

• It’s left to the edge systems to recover from this network behaviour.
• Efforts to expand the network’s role have foundered

• QoS has just got nowhere!
• Various forms of source-directed forwarding are resisted by network

operators who want control over traffic engineering
• Networks took up a role of defending the network resource against

aggressive application behaviour
• Some networks enabled user surveillance

media

network

TCP Transport

apps

$$$

The new Networking Space
And this is why QUIC is so interesting – it is pushing both network
carriage and host platform into commodity roles in networking and
allowing applications to effectively customize the way in which they
want to deliver services and dominating the entire networked
environment

QUIC is the application’s view of what Transport should be!

media

network

TCP Transport

apps

media

network

UDP Transport

apps
Internal

Transport +
session security

$$$
QUIC and value transform

in the network stack

What does this mean for the
Internet?
• The relationship between applications, hosts and networks has

soured into mutual distrust and suspicion
• The application now defends its integrity by wrapping up as much of

the service transaction with encryption and indirection
• QUIC (and MASQUE) is an intrinsic part of this process of wrapping up

traffic in encryption and redirection
• For the network operator there is little left to see
• And I suspect that there is no coming back from here!

What can a Network Operator Do?

• When all customer traffic is completely obscured and encrypted?
• Traffic Shaping?
• Regulatory Requirements for traffic interception?
• Load Balancing / ECMP

The new Internet Space

“What you can’t dominate, you commoditise*”

• Vertically integrated service providers have faded away into history - the
deregulated competitive service industry continues to specialize rather
than generalize at every level

• Carriage is no longer an inescapable monopoly - massively replicated
content can be used as a substitute for many carriage service elements

• Control over the platform is no longer control over the user. Operating
systems have been pushed back into a basic task scheduling role, while
functions are being absorbed into the application space

* A related quote is Peter Thiel’s “Competition is for losers!”

Thanks!

