Whatever happened to IPv6?

Geoff Huston AM Chief Scientist, APNIC

Projecting IPv6 Adoption

This is unexpected

- Back in the early nineties when the Internet was just picking up momentum NOBODY could conceive that a transition to IPv6 would take longer than five years - tops!
- A total timeframe to complete this transition from start to finish of fifty years was unthinkable!
- But that is where we are
- What went wrong?

We started early

• The Internet was only just gathering momentum in 1990 we were told that the address plan had just a few years to run before the Class B address pool would be fully depleted

"Internet Growth" Frank Solensky, Proc. IETF, Aug 1990

We worked quickly

- The ROAD effort in the IETF had produced candidate *IPng* protocols by 1992
- And by 1994 we had managed reach a rough consensus on what to do...
 - Reduce the speed of address runout by dropping Class A, B and C structured addresses in address deployment and routing and replacing it by variable sized network/host identifiers
 - Adopt a successor IP protocol with a larger address field...

IPv6!

RFC 1883, December 1995

IPv6 was incremental

Minimal changes to IP:

- Expand the address fields four-fold to 128 bits
 - 64-bit network prefix, 64-bit interface identifier
- Remove packet fragmentation-on-the-fly
- Replace ARP with Multicast
- BUT
 - It was NOT backward compatible with IPv4!

Transition using Dual Stack

- The plan was that we needed to run some form of a "dual stack" transition process
 - Network-level proxies/translators were deemed to be too insecure
- Which meant that we needed to equip EVERY host and EVERY network with two protocol stacks
- But the network was too big to "just do it" so we devised a dual stack transition plan that allowed for piecemeal adoption

Problem Solved!

- We had a technology solution to address depletion
- Hosts preferred to use IPv6 when there was IPv6 available
- The transition would operate automatically as networks enabled IPv6
- So, we then shifted our collective attention elsewhere!
- For the next decade or so
- Until...

Accelerating Growth

IPv4 Global Address Allocations

We had this plan ...

Time

Something wasn't right!

We were meant to have completed the transition to IPv6 BEFORE we completely exhausted the supply channels of IPv4 addresses

The 2012 IPv6 Transition Plan

Date

What now?

Despite the whinging from IETF purists over the compromise of a pristine end-to-end model there really was no other option:

The answer was NATs!

NATS

- This low friction response to IPv4 address depletion had been used for more than a decade in client/server network architectures
- **Clients** initiate a service transaction and only need an external address/port binding for the duration of the transaction
- **Servers** sit in central data centres and share platform IP addresses using name-based distinguishers

Implications

- IPv4 addresses continued to be in demand far beyond the exhaustion of the RIR's free space pools
 - In the transition environment, all new and expanding network deployments needed IPv4 service access and IPv4 addresses for as long as we were in this dual track transition
- But the process was no longer directly controlled through RIR's address allocation policies
 - Address access for IPv4 addresses is mediated by market pricing
 - And the large CDN actors appear to be dominating this space

Not everyone is feeling the pressure to move to Dual Stack

Use of IPv6 for Northern America (XQ)

https://stats.labs.apnic.net/ipv6/XQ

- Because we no longer operate within a strict address-based network architecture
 - Clients no longer use a permanent unique public IP address to communicate with servers
 - Servers no longer use a permanent unique public IP address to communicate with clients
- Address scarcity takes on a different dimension when you don't need public addresses to uniquely number every host and service

What's driving change today?

• From scarcity to abundance!

- For many years, the demand for communications services outstripped available capacity
- We used price as distribution function to moderate demand to match available capacity
- But this is no longer the case available capacity in the communications domain far outpaces demand

Abundant Capacity

Fibre cables continue to deliver massive capacity increases within relatively constant unit cost of deployment

Abundant Compute Power

By Max Roser, Hannah Ritchie - https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=98219918

Abundant Storage

Historical Cost of Computer Memory and Storage

http://aiimpacts.org/wp-content/uploads/2015/07/storage_memory_prices_large-_hblok.net_.png

How can we use this abundance?

- By changing the communications provisioning model from on demand to just in case
- Instead of using the network to respond to users by delivering services *on demand* we've changed the service model to provision services close to the edge just in case the user requests the service
- With this change we've been able to eliminate the factors of *distance* from the network and most network transactions occur over **shorter network** spans
- What does a *shorter* network enable?

- Increasing transmission capacity by using photonic amplifiers, wavelength multiplexing and phase/amplitude/polarisation modulation for fibre cables
- Serving content and service transactions by distributing the load across many individual platforms through server and content aggregation
- The rise of high-capacity mobile edge networks and mobile platforms add massive volumes to content delivery
- To manage this massive load shift we've stopped pushing content and transactions across the network and instead **we serve from the edge**

Faster

- Reduce latency stop pushing content and transactions across the network and instead **serve from the edge**
- The rise of CDNs serve (almost) all Internet content and services from massively scaled distributed delivery systems.
- The "Packet Miles" to deliver content to users has shrunk that's faster!
- The development of high frequency cellular data systems (4G/5G) has resulted in a highly capable last mile access network with Gigabit capacity
- Applications are being re-engineered to meet faster response criteria
- Compressed interactions across shorter distances using higher capacity circuitry results in a much faster Internet

Better

- If "better" means "more trustworthy" and "more privacy" then we are making progress at last!
 - Encryption is close to ubiquitous in the world of web services
 - TLS 1.3 is moving to seal up the last open TLS porthole, the SNI field
 - QUIC is sealing up the transport controls from the networks
 - Oblivious DNS and Oblivious HTTP is moving to isolate knowledge of the querier from the name being queried
 - The content, application, and platform sectors have all taken the privacy agenda up with enthusiasm, to the extent that whether networks are trustable or not doesn't matter any more **all network infrastructure is uniformly treated as untrustable!**

Cheaper

- We are living in a world of abundant comms and computing capacity
- And working in an industry when there are significant economies of scale
- And it's being largely funded by capitalising a collective asset that is infeasible to capitalise individually the advertisement market
- The result is that a former luxury service accessible to just a few has been transformed into an affordable mass-market commodity service available to all

And in all this, the money moved up the stack

So, who pays?

- Networks need to make the investment to switch to a dual stack mode that includes IPv6
- But neither the user base nor the content world really care
 - And they are certainly not going to pay a premium to the network operator for $\ensuremath{\mathsf{IPv6}}$
- And in the application service world, IP addresses are **not** the critical resource
- We've changed the "currency" of networks!

A Network of Names

- Today's public Internet is largely a service delivery network using CDNs to push content and service as close to the user as possible
- The multiplexing of multiple services onto underlying service platforms is an application-level function tied largely to TLS and service selection using SNI
- The DNS is now used to perform "closest match" service platform selection, supplanting the role of routing
 - Most large CDNs run a BGP routing table with an average AS Path Length that is intended to converge to 1!

Is it Routing? Or Switching?

Let me repeat that, because it's important:

• Most large CDNs run a BGP routing table with an average AS Path Length that is converging to a value of 1!

- The DNS is now used to perform "closest match" service platform selection, supplanting the role of routing
- By volume, most of today's Internet traffic is switched, not routed across the inter-AS space

A new Internet Architecture

- We've moved from end-to-end peer networks to client/server asymmetric networks
- We've replaced single platform servers-plus-network to replicated servers-minus-network with CDNs
- Clients aren't identified with a unique public IP address clients are inside NATs are uniquely identified only in a local context
- Individual services aren't identified with a unique public IP address – services are identified in the DNS

A new Internet Architecture

to replicated

- ve replaced from address-based it/server ser We've moved from address-based to replice Clie networks to name-based services are i a unique public IP address – clients ... are uniquely identified only in a local context are i
 - Individual services aren't identified with a unique public IP address – services are identified in the DNS

What am I saying?

- The slow uptake of IPv6 is not because this industry is chronically stupid or short sighted
- There is something else going on here...

What am I saying?

- IPv6 alone is not critical to a large set of end user service delivery environments
- We've been able to take a 1980's address-based architecture and scale it more than a billion-fold by altering the core reliance on distinguisher tokens within the network from addresses to names
 - There was no real lasting benefit in trying to leap across to just another 1980's address-based architecture (with only a few annoyingly stupid differences, apart from longer addresses!)

Today's Internet:

- Names Matter
- The DNS Matters
- Addresses not so much
- Address-based Routing not so much

Thank You!

