
QUIC

Geoff Huston AM

Chief Scientist, APNIC

TCP is..

The workhorse of the Internet!

A transport protocol that constructs a reliable full duplex adaptive
streaming service on top of an unreliable IP datagram service
• Uses a coordinated state between the two end systems without any network

intervention or mediation
• Uses a sliding window to allow lost data to be resent
• Uses ACK-clocking to regulate the sending behaviour to match network path

capacity estimate

TCP is NOT…

• Fully independent of the underlying platform Operating System’s
transport services
• Fully multi-stream (it has head-of-line blocking)
• Fully multi-path (yes, MP-TCP exists, but there are some outstanding issues here!)

• Address-agile
• Free from on-the-wire network intervention (TCP control parameters

are sent in the clear)
• Has e2e encryption as a second step / afterthought (TLS)
• Everything for everyone – it relies on the application to perform data

framing and in-band control

Can we fix this in TCP?

• We’ve been trying to fix this for about 40 years
• Without much success!

• TCP does have a capabilities exchange in the opening handshake, but
it has only been used for Max Segment Size, Window Scaling and
Selective Acknowledgement
• A large part of the issue is the proliferation of TCP-aware middleware

embedded within networks, which prevents significant modification
of TCP behaviours
• So how about an entirely new protocol?

A New Protocol?

• We could define a
new IP protocol
• We still have 105

available protocol
number slots in the
IANA Protocol
Number registry!

…

Unlikely!

• It’s the same problem .. every host and every piece of active
middleware needs to be aware of this new protocol
• Widespread adoption of a new transport protocol in the public

Internet is just not a realistic option
• Just look at the protracted adoption saga for IPv6 to understand the issues

around the dynamics of technology adoption in a highly decentralized
environment

Borrowing from the Past

• The Internet was conceived as an Inter-net, an overlay network that
provided an end-to-end model of connectivity layered above a
disparate collection of networks
• Why not place a new transport protocol ABOVE an end-to-end UDP

service as an overlay transport?
• And why not scramble the fields with end-to-end encryption to deter network

middleware from intruding (and ossifying) the protocol?

• Which gives us QUIC!

QUIC is a mashup of TCP and TLS

HTTP
Multi-stream

TLS
Session Encryption

TCP
Data stream integrity
Congestion Control

HTTP

QUIC
Multi-stream

Encryption
Data stream integrity
Congestion Control

UDP

IP

HTTP/2
QUIC

HTTP/3

e2e encrypted

e2e encrypted

QUIC is…

Constructed upon a basic UDP datagram service
All other transport services (data integrity, session control, congestion control,
encryption) are shifted upwards in the protocol stack towards the application. A host
platform may provide a QUIC API as part of the host library, but the application can
also provide its own QUIC service independent of the host

QUIC is…

So much more than just “encrypted TCP over UDP”
• Support for multi-stream multiplexing that avoids head-of-line blocking and

exploits a shared congestion and encryption state
• Faster - Combines transport and encryption setup exchange in a single 3-way

exchange at session start, and supports fast reopen
• Customisable - QUIC implementations can use individual flow controllers
• QUIC places its transport control fields inside the encryption envelope using

TLS 1.3, so QUIC features minimal exposure to the network
• Supports Remote Procedure Call service models as well as bit-streaming and

datagram services

QUIC is address agile

• NATs are potentially hostile to QUIC because of the outer UDP
wrapper
• A NAT may rebind a QUIC session (shift the externally visible address/port of a

host during a session), as NATs are not generally aware of UDP streaming
states

• QUIC uses a persistent “connection ID”
• If a host receives a QUIC frame with the same connection ID and a new source

IP address / port it will send a challenge by way of a random value that should
be echoed back. This is all performed within the e2e encryption envelope.
That way a QUIC e2e session can map into new address/port associations on
the fly

QUIC also…

• Is IP fragmentation intolerant – QUIC uses PMTUD, or defaults to
1,200 octet UDP payloads
• Never retransmits a QUIC packet – retransmitted data is sent in the

next QUIC packet number – this avoids ambiguity about packet
retransmission
• Extends TCP SACK to 256 packet number ranges (up from 3 in TCP

SACK)
• Separately encrypts each QUIC packet – no inter-packet dependencies

on decryption
• May load multiple QUIC packets in a single UDP frame

QUIC flow structuring

A QUIC connection is broken into
“streams” which are reliable data flows –
each stream performs stream-based loss
recovery, congestion control, and
relative stream scheduling for bandwidth
allocation

QUIC also supports unreliable encrypted
datagram delivery

QUIC is:

• A logical evolutionary step for transport services, providing more
flexibility, faster connection setup, and a larger set of transport
services

• It’s what we should expect from a capable modern transport
protocol!

But…

QUIC and Network Load Balancing

• Front-end load balances performing load balancing on UDP flows using the
UDP connection 5-tuple
• If the remote end performs NAT rebinding the load balancer will be thrown

by this shift, and it has no direct visibility into the e2e session to uncover
the connection ID

 NAT Load Balancer

Server A

Server B

Source Address A

Source Address B

NAT re-binding

QUIC session

QUIC and Network Load Balancing

• Front-end load balances performing load balancing on UDP flows using the
UDP connection 5-tuple
• If the remote end performs NAT rebinding the load balancer will be thrown

by this shift, and it has no direct visibility into the e2e session to uncover
the connection ID

• If we really want large scale QUIC with front-end load balancing and if we
still need to tolerate NATs then we will need to think about how the end
point can share the connection ID state with its front-end load balancer,
or how to terminate the QUIC session in the front-end and use a second
session to a selected server

QUIC and NIC Offloading

• Many (most?) NICs these days offer ”TCP Offloading”
• Platform sends a large data buffer to the NIC, and the processor in the NIC

performs TCP segmentation
• The NIC reassembles smaller received data units to a larger unit before raising

an interrupt to the host processor
• Relieves the CPU from TCP processing overheads, improving server capacity

• Offloading QUIC to NICs is work-in-progress
• But its looking good – QUIC is well suited to device offload
• There is a need for mods to kernel and network drives, as well as QUIC

libraries
• It’s not here just yet, but it is looking promising!

Measuring QUIC

Triggering QUIC in HTTP

1 - Use the DNS to trigger QUIC:
• Set up an HTTPS record for each server name, with value: alpn=“h3”

DNS HTTPS Query Rate

The query volume for DNS names now
includes a query for the HTTPS record
in addition to the A and AAAA queries

This has increased the total query
volume by some 33%

Triggering QUIC in HTTP

1 - Use the DNS to trigger QUIC:
• Set up an HTTPS record for each server name, with value: alpn=“h3”

2 - Use content-level controls to trigger QUIC:
• Add Alt-Svc: h3=“:443” to the HTML headers

(This second method requires a subsequent query in a distinct HTTP session to allow the client
to use the Alt-Svc capability.)

Setting Expectations

• Chrome has a dominant share of browser instances - roughly, some 65%*
• And Chrome has been supporting a switch to QUIC via the Alt-Svc

directive since 2020

* Oberlo.com

Setting Expectations

• Chrome has a dominant share of browser instances - roughly, some 65%*
• And Chrome has been supporting a switch to QUIC via the Alt-Svc directive since

2020

• Apple Safari is now supporting QUIC, using the DNS apln directive
• So a QUIC-aware server platform should be seeing up to 85% of its

sessions using QUIC
• This figure is probably not achievable as the content level control requires some

precise conditions for the “second” visit:
• long enough between visits for the session keepalive timer to expire
• Short enough such that the local cache of server capabilities has not expired

* https://gs.statcounter.com/browser-market-share

Cloudflare’s Numbers – 31%
12 Month Time Series

APNIC’s Numbers – 75%

First Fetch – mainly Safari clients

Second and Subsequent Fetches – mainly Chrome clients are added here

26

APNIC Measured QUIC Use – June
2025

100%

QUIC Payload Sizes

This data has been collected from a
single day of measurement
(4/6/25)

This disparity between V4 and V6
appears to reflect a popular
implementation’s design choice to
aim at an IP MTU of 1,280 bytes

Browsers and QUIC Use

HTTPS Query
QUIC First

Fetch
QUIC Sub.
Fetch NO Quic

Chrome 9,258,909 174,193 96,824 8,139,214 1,022,871
Safari 5,085,639 4,727,457 2,761,376 20,246 2,304,017
Edge 67,009 47,441 16,776 37,957 12,576
Firefox 12,989 3,689 4,783 5,789 2,417
Opera 4,054 2,218 1,715 1,544 795
Others 29,540 9,828 3,427 15,975 9,838

14,458,140 4,964,826 2,884,901 8,220,725 3,352,514

Browsers and QUIC Use

HTTPS Query
QUIC First

Fetch
QUIC Sub.
Fetch NO Quic

Chrome 64.0% 3.5% 3.4% 99.0% 30.5%
Safari 35.2% 95.2% 95.7% 0.2% 68.7%
Edge 0.5% 1.0% 0.6% 0.5% 0.4%
Firefox 0.1% 0.1% 0.2% 0.1% 0.1%
Opera 0.0% 0.0% 0.1% 0.0% 0.0%
Others 0.2% 0.2% 0.1% 0.2% 0.3%
Total 100% 100% 100% 100% 100%

QUIC Use

• If QUIC access is supported by the current releases by both the major
browsers then we should see a high QUIC use rate when the ability to
use QUIC is signaled by both methods (alt-svc and DNS HTTPS)
• What do we see?
• In most locales the alt-svc method of triggering QUIC is supported by

browsers and network infrastructure
• What about the DNS HTTPS method of triggering QUIC?
• Who uses a DNS HTTPS query?
• Are HTTPS responses being filtered by DNS infrastructure in some cases?

31

The DNS HTTPS record

• The HTTPS record can also contain ipv4hint and ipv6hint attributes
• Any A and AAAA records for a name will be used by a client in

preference to these hint attributes
• But if there is no A and no AAAA record in the zone, then a HTTPS-

aware client will be forced to use these address hint attributes
• Let’s try that, and allow the client to use either HTTP/2 OR HTTP/3:

test_name IN HTTPS 1 . alpn="h2,h3" ipv4hint=192.0.2.1 ipv6hint=2001:db8::1

32

DNS HTTPS Use Rate

How many users query HTTPS records?

33

DNS Query Data from
Cloudflare Radar

A – 63%
AAAA – 18%
HTTPS – 8.9%

DNS HTTPS Use Rate

How many users can use DNS HTTPS responses?

All Chrome Safari Others
Samples 13,177,108 9,487,295 3,602,160 87,653 -
DNS HTTPS Query 3,708,895 28.1% 157,695 1.7% 3,506,664 97.3% 44,536 50.8%
Web Fetch (h2/h3) 3,480,873 26.4% 5,957 0.1% 3,469,867 96.3% 5,049 5.8%
Web Fetch (QUIC) 2,710,668 20.6% 4,793 0.1% 2,701,516 75.0% 4,359 5.0%

Data collected over a 24-hour period (7/7/2025)

Few Chrome users (1.7%) perform an HTTPS
query, and even fewer (0.1%) followup with a
fetch of the web object.

Most Safari users (97.3%) perform an HTTPS
query, and most (96.3%) followup with a fetch of
the web object. Fewer users (75%) prefer to use
QUIC to perform web object retrieval when given
the choice.

34

DNS HTTPS Use Rate

How many users can use DNS HTTPS responses?

All Chrome Safari Others
Samples 13,177,108 9,487,295 3,602,160 87,653 -
DNS HTTPS Query 3,708,895 28.1% 157,695 1.7% 3,506,664 97.3% 44,536 50.8%
Web Fetch (h2/h3) 3,480,873 26.4% 5,957 0.1% 3,469,867 96.3% 5,049 5.8%
Web Fetch (QUIC) 2,710,668 20.6% 4,793 0.1% 2,701,516 75.0% 4,359 5.0%

Data collected over a 24-hour period (7/7/2025)

Few Chrome users (1.7%) perform an HTTPS
query, and even fewer (0.1%) followup with a
fetch of the web object.

Most Safari users (97.3%) perform an HTTPS
query, and most (96.3%) followup with a fetch of
the web object. Fewer users (75%) prefer to use
QUIC to perform web object retrieval when given
the choice.

35

Why is Safari not using QUIC in 25% of cases?

DNS HTTPS Use Rate

How many users can use DNS HTTPS responses?

All Chrome Safari Others
Samples 13,177,108 9,487,295 3,602,160 87,653 -
DNS HTTPS Query 3,708,895 28.1% 157,695 1.7% 3,506,664 97.3% 44,536 50.8%
Web Fetch (h2/h3) 3,480,873 26.4% 5,957 0.1% 3,469,867 96.3% 5,049 5.8%
Web Fetch (QUIC) 2,710,668 20.6% 4,793 0.1% 2,701,516 75.0% 4,359 5.0%

Data collected over a 24-hour period (7/7/2025)

Few Chrome users (1.7%) perform an HTTPS
query, and even fewer (0.1%) followup with a
fetch of the web object.

Most Safari users (97.3%) perform an HTTPS
query, and most (96.3%) followup with a fetch of
the web object. Fewer users (75%) prefer to use
QUIC to perform web object retrieval when given
the choice.

Chrome uses alt-svc
and not DNS HTTPS

Safari uses DN
S HTTPS

36

Network Traffic Volume

Presentation to RIPE 86: The New Encrypted Protocol Stack and How to Deal with it – Bart van de Velde, Cisco

Why is QUIC important?

Because QUIC is fast
Because QUIC encrypts everything
• No visible transport control settings
• No visible Server Name Indication in the crypto-setup
• No visible traffic profile other than inter-packet timing
• And if you use a MASQUE-based VPN then there no residual visibility!

What does this mean for TCP?

It’s not looking all that good for TCP’s prospects
• QUIC not only does faster start up, but it supports multi-channel in a

frictionless manner
• QUIC resists network operator efforts to perform traffic shaping

through direct manipulation of TCP control parameters
• QUIC allows the application service provider to control the congestion

behaviour of its sessions

What does this mean for TCP?

Normally you would expect any transition from TCP to QUIC to take forever
BUT:
• QUIC gives benefit to adopters through more responsive web services
• QUIC does a better job of hiding content, which is a benefit to the service

operator
• QUIC has fewer external dependencies
• QUIC can be deployed on a piecemeal basis

So it all may be over for TCP in a very small number of years!

What does this mean for the
Internet?
• IP was a network protocol that provided services to

attached devices
• The network service model used by IP was minimal
• Packets may be dropped, fragmented, duplicated, corrupted

and/or reordered on their path through the network
• It’s left to the edge systems to recover from this network

behaviour.
• Efforts to expand the network’s role have foundered
• QoS has just got nowhere!
• Various forms of source-directed forwarding are resisted by

network operators who want control over traffic engineering

media

network

TCP Transport

apps

$$$

The new Networking Space
And this is why QUIC is so interesting – it is pushing both network
carriage and host platform into commodity roles in networking and
allowing applications to effectively customize the way in which they
want to deliver services and dominating the entire networked
environment

QUIC is the application’s view of what Transport should be!

media

network

TCP Transport

apps

media

network

UDP Transport

apps

Internal

Transport +

session security

$$$

QUIC and value transform

in the network stack

What does this mean for the
Internet?
• The relationship between applications, hosts and networks has

soured into mutual distrust and suspicion
• The application now defends its integrity by wrapping up as much of

the service transaction with encryption and indirection
• QUIC (and MASQUE) is an intrinsic part of this process of wrapping up

traffic in encryption and redirection
• For the network operator there is little left to see
• And I suspect that there is no coming back from here!

What can a Network Operator Do?

• When all customer traffic is completely obscured and encrypted?
• Traffic Shaping?
• Regulatory Requirements for traffic interception?
• Load Balancing / ECMP

The new Internet Space

“What you can’t dominate, you commoditise*”

• Vertically integrated service providers have faded away into history - the
deregulated competitive service industry continues to specialize rather
than generalize at every level

• Carriage is no longer an inescapable monopoly - massively replicated
content can be used as a substitute for many carriage service elements

• Control over the platform is no longer control over the user. Operating
systems have been pushed back into a basic task scheduling role, while
functions are being absorbed into the application space

* A related quote is Peter Thiel’s “Competition is for losers!”

Thanks!

