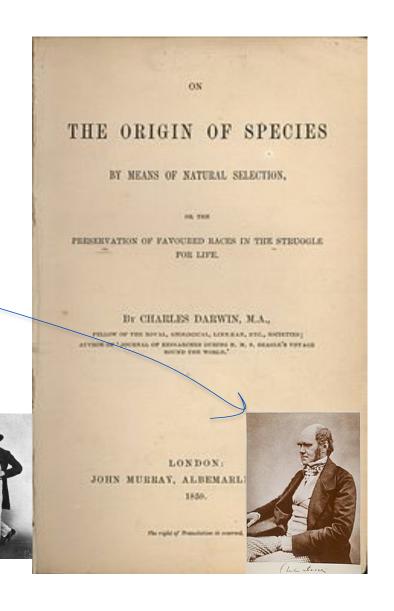
The Evolution of TCP Transport Protocols


Geoff Huston AM APNIC Labs

November 1859

Charles Darwin published a monumental work that described a theory of the origins of the diversity of life through a process of natural selection, a finding initially jointly authored in a paper by Alfred Wallace and Charles Darwin

It described a natural process that is commonly corrupted as "survival of the fittest"

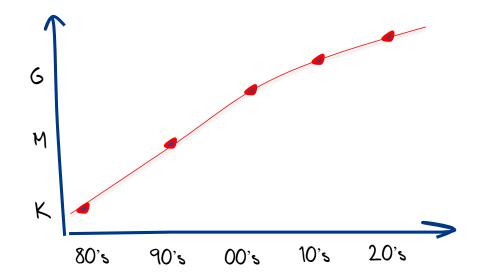
It's not just the living world where we observe these evolutionary pressures

The Evolution of Speed

1980's

TCP rates of Kilobits per second

1990's

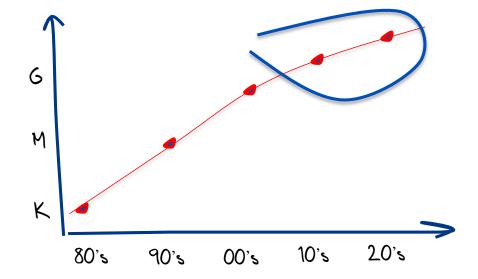

TCP rates of Megabits per second

2000's

TCP rates of Gigabits per second

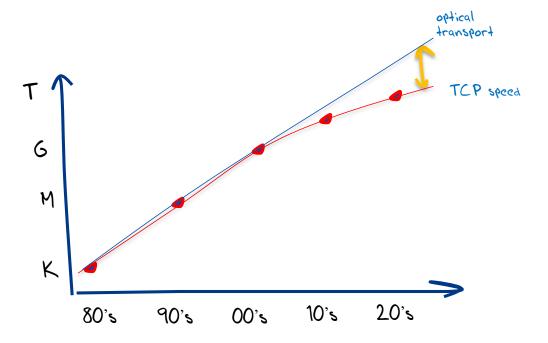
2010's

- TCP rates of tens of Gigabits per second
 2020's
 - TCP rates of tens of Gigabits per second



The Evolution of Speed

1980's


TCP rates of Kilobits per second
 1990's

- TCP rates of Megabits per second
 2000's
- TCP rates of Gigabits per second
 2010's
- TCP rates of tens of Gigabits per second2020's
 - TCP rates of tens of Gigabits per second

Today

- Optical transmission speeds are now edging into multi-Terabit capacity
- But peak TCP session speeds across the network are not keeping up
- Why not?

5

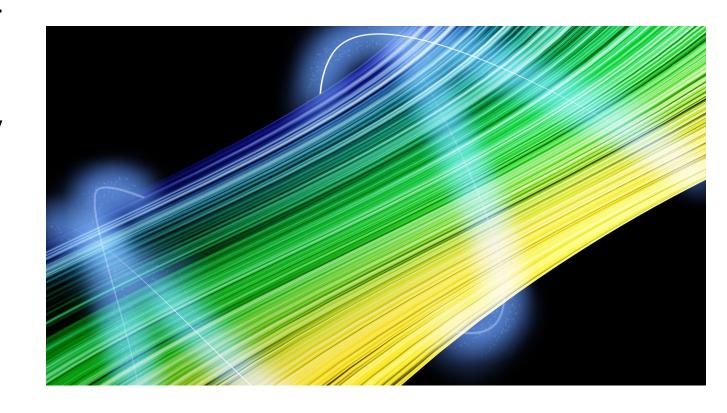
TCP is the Internet

- The Transmission Control Protocol is an end-to-end protocol that creates a reliable stream protocol from the underlying IP datagram device
- This single protocol is the "beating heart" at the core of the Internet
- TCP operates as an adaptive rate control protocol that attempts to operate efficiently and fairly

TCP Performance Objectives

To maintain an average flow which is both Efficient and Fair

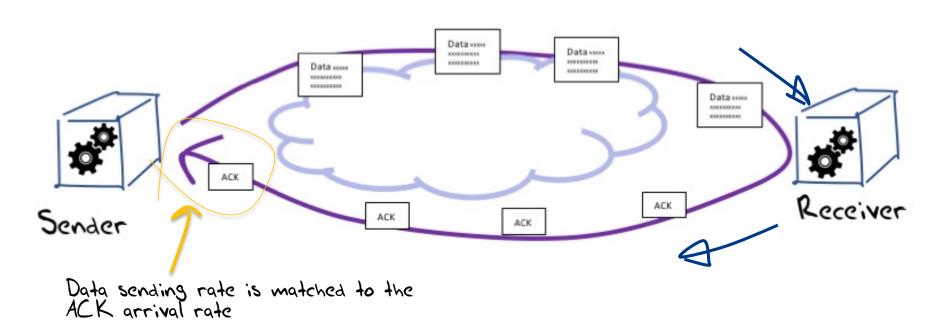
Efficient:


- Minimise packet loss
- Minimise packet re-ordering
- Do not leave unused path bandwidth on the table!

Fair:

- Do not crowd out other TCP sessions
- Over time, take an average 1/N of the path capacity when there are N other TCP sessions sharing the same path

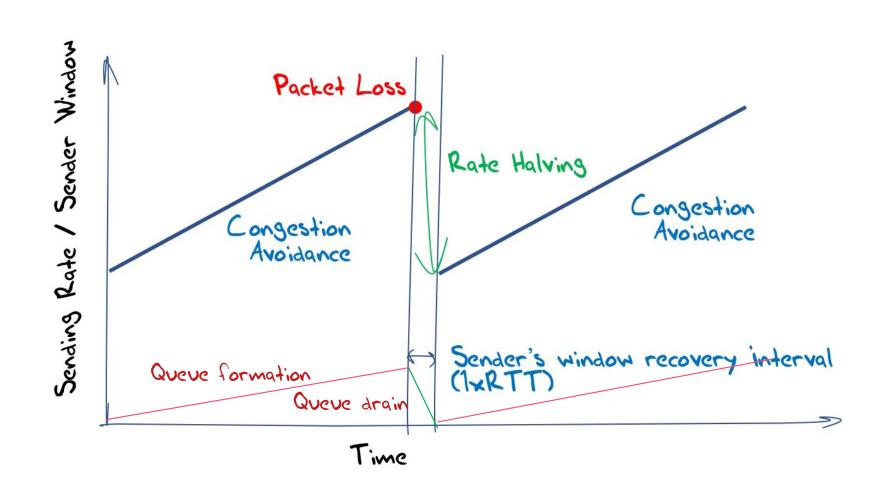
It's a Flow Control process


- Think of this as a multiflow fluid dynamics problem
- Each flow has to gently exert pressure on the other flows to signal them to provide a fair share of the network, and be responsive to the pressure from all other flows

TCP Control

TCP is an **ACK Pacing** protocol

If the sender sends one packet each time it receives an ACK, then the sender will maintain a steady number of packets in flight within the network


TCP Control

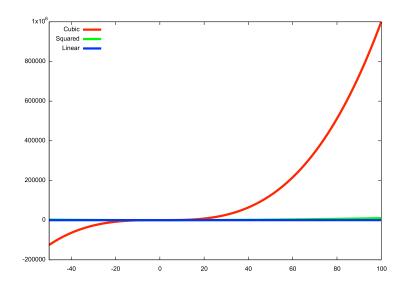
- Ideally TCP would send packets at a fair share of available network capacity. But the TCP sender has no idea what "available network capacity" means.
- So, TCP uses 'rate adaptation' to probe into network, increasing the sending rate until it receives a signal that the sending rate is 'too fast'
- We've been experimenting with various forms of TCP rate adaptation for decades!

"Classic TCP" - TCP Reno

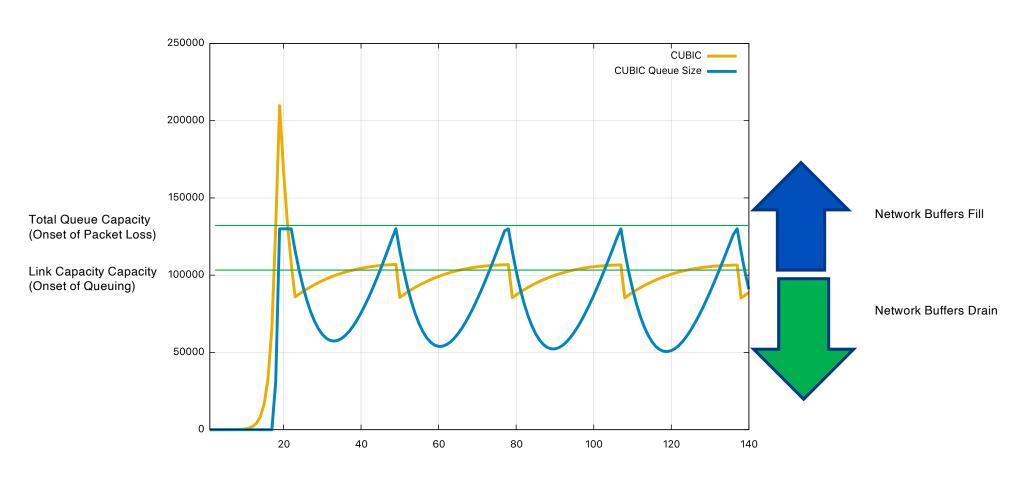
- Additive Increase Multiplicative Decrease (AIMD)
 - While there is no packet loss, increase the sending rate by one segment (MSS) each RTT interval
 - If there is packet loss (detected by duplicate ACKs) pause for 1xRTT and decrease the sending rate by 50% over the next RTT Interval by halving the sender's send window
- Start Up
 - Each RTT interval, double the sending rate
 - We call this "slow start" probably because its anything but slow!!!

The Classic TCP Picture

Changing TCP's control algorithm


- The TCP packet format is invariant
- But the control algorithm can vary
- What defines a "fitter" control algorithm?
 - Be no less 'aggressive' than everyone else
 - Try to exploit opportunities that others do not
 - But don't destroy the environment (network)

Carriage Service Challenges


- Radio system with non-congestion loss behaviours
- LEO satellite services with very high jitter elements
- Very high bandwidth services pose a challenge to linear rate increase
- How to take advantage of equal-cost multi path frameworks
- Session "pulsing" used by streaming services

CUBIC

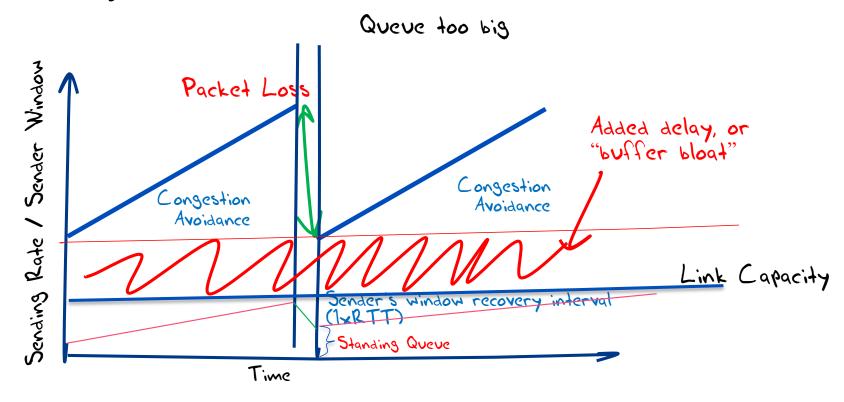
- CUBIC is designed to be useful for high-speed sessions while still being 'fair' to other sessions and also be efficient even at lower speeds
- Rather than probe in a linear manner for the sending rate that triggers packet loss, CUBIC uses a non-linear (cubic) search algorithm

CUBIC and Queue formation

CUBIC assessment

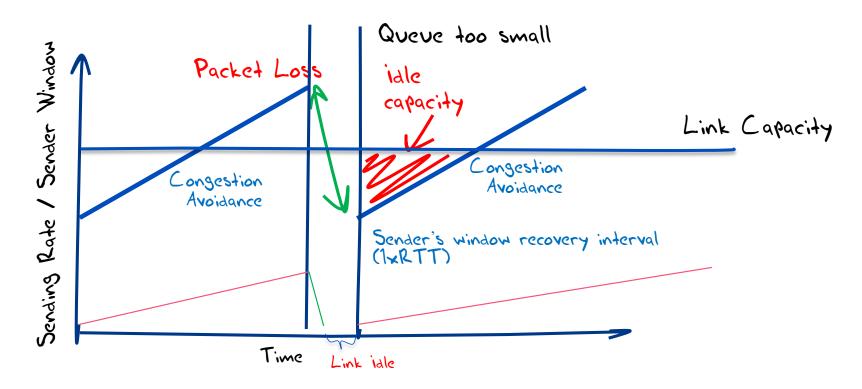
- Can react quickly to available capacity in the network
- Tends to sit for extended periods in the phase of queue formation
- Can react efficiently to long fat pipes and rapidly scale up the sending rate
- Operates in a manner that tends to exacerbate 'buffer bloat' conditions

And there's a whole lot more ...


TCP Variant	Feedback	
RENO	Loss	AIMD
Vegas	Delay	
High Speed	Loss	
TCP		
BIC	Loss	Binary Increase
CUBIC	Loss	Cubic function increase - Linux-Adopted
Agile-TCP	Loss	High Speed - Low Delay
H-TCP	Loss	High Speed
Fast	Delay	Akamai Propriatary
Compound	Loss/Delay	Microsoft Adopted
TCP		
Westwood	Loss	Dynamic setting of Slow Start Threshold
Elastic TCP	Loss/Delay	High Speed - High Delay

TCP and Buffers - the Theory

- When a sender receives a loss signal it repairs the loss and halves it's sending window
- This will cause the sender to pause for the amount of time to drain half the outstanding data in the network (1xRTT interval)
- Ideally, this exactly matches the amount of time taken for the queue to drain
- At the time the queue is drained the sender resumes its sending (at half the rate) and the buffer has fully drained
- For this to work efficiently, the queue size for a link should equal the delay bandwidth product of the link it drives


TCP and Buffers

Buffer Too Big: The queue never drains, so part of the buffer just adds delay to the connection

TCP and Buffers

Buffer Too Small: The queue drains, and the sender operates below bottleneck speed – so the link is under-used

TCP and Buffer Size

The "general" rule of thumb for configuring the buffer size in a router is:

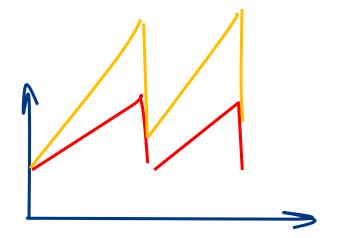
Size =
$$(BW \cdot RTT)$$

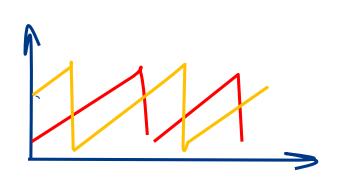
Using the bandwidth and the roundtrip delay of the link being driven

TCP and Buffer Size

The "general" rule of thumb for configuring the buffer size in a router is:

All this works with an assumption of a single queue and a single flow


שם בים שandwidth and the roundtrip delay of the link being driven


From 1 to N - Scaling Switching

- This finding of buffer size relates to a single flow through a single bottleneck resource
- What happens to buffers with more simultaneous flows and faster transmission systems?

Flow Mixing

- If 2 flows use a single buffer and they resonate precisely then the buffer still needs to be delay-bandwidth size
- If they are precisely out of phase the common buffer requirement is reduced by 25%

Smaller Buffers?

What about the case of N de-synchronised flows?

Size =
$$(BW \cdot RTT) / \sqrt{N}$$

Assuming that the component flows manage to achieve a fair outcome of obtaining 1/N of the resource in a non-synchronised manner, then the peak buffer resource is inversely proportionate to the square root of N

The Role of Buffers

- Buffers in a network serve two essential roles:
 - smooth sender burstiness
 - Multiplexing N inputs to 1 output

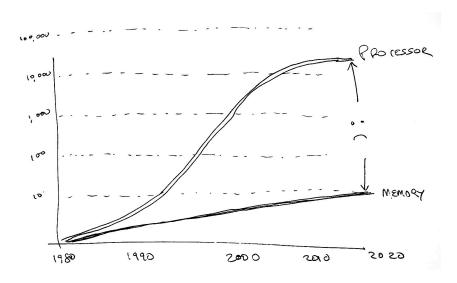
Sender Pacing (Fair Queuing)

- Distribute cwnd data across the entire RTT interval
- Removes burst adaptation pressure on network buffers

net.core.default_qdisc=fq

This is important— EVERY sender should have pacing enabled!

Tiny Buffers?

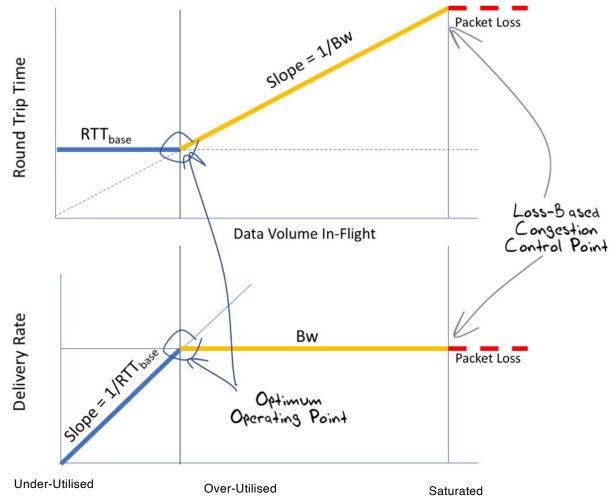

 If all senders 'paced' their sending to avoid bursting, and were sensitive to the formation of standing queues then we would likely have a residual multiplexing requirement for buffers where:

$$B \ge O(\log W)$$

where W is the average flow window size

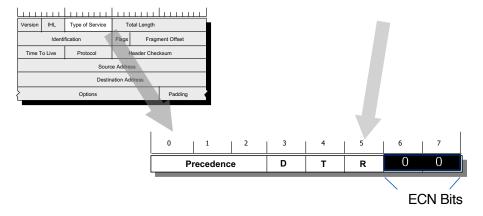
Why is this important?

- Because memory speed is not scaling at the same rate as transmission or switching
- Further capacity and speed improvements in the network mandate reduced memory demands within the switch


Switching Chip Design TradeOffs

- On-Chip memory is faster, but limited to between ~16M to ~64M
- A chip design can include an interface to external memory banks but the memory interface/controller also takes up chip space and the external memory is slower
- Between 20% to 60% of switch chip real estate is devoted to memory / memory control
- Small memory buffers in switch design allows for larger switch fabric implementations on the chip

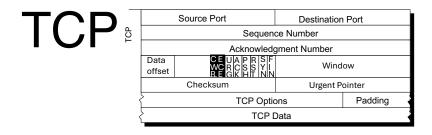
Optimising Flow State


- There are three 'states' of flow management:
 - Under-Utilised where the flow rate is below the link capacity and no queues form
 - Over-Utilised where the flow rate is greater that the link capacity and queues form
 - Saturated where the queue is filled and packet loss occurs
- Loss-based control systems probe upward to the Saturated point, and back off quickly to what they guess is the Under-Utilised state in order to the let the queues drain
- But the optimal operational point for any flow is at the point of state change from Under to Over-utilised, not at the Saturated point

RTT and Delivery Rate with Queuing

How to detect the onset of queuing?

 By getting the network's routers to report when queues are forming!

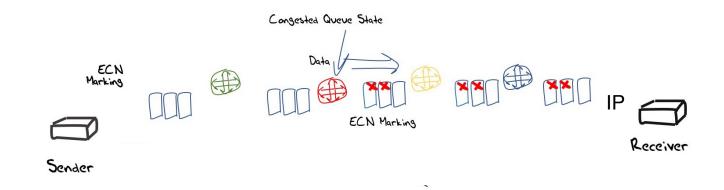


0 0 - Non-ECN Capable Transport

0 1 - ECN Capable Transport

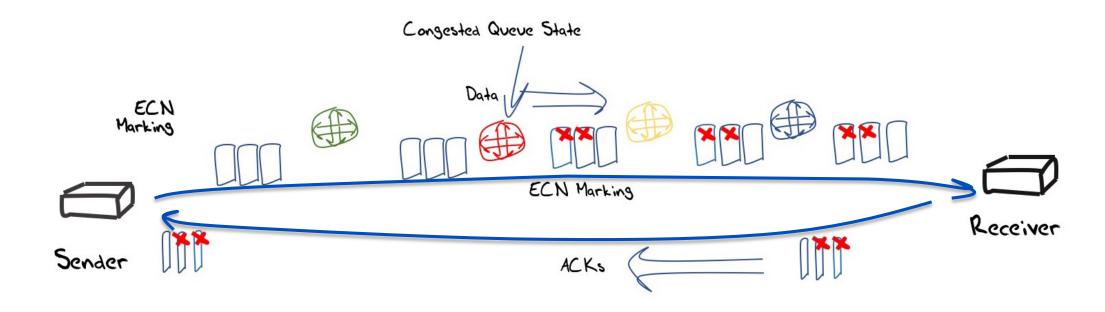
10 - ECN Capable Transport

1 1 - Congestion Experienced



ECE – receiver back to sender – CE received CWR – sender to receiver – Congestion Window Reduced

SYN+ECE+CWR – ECN capable on session start SYN+ACK+ECE – ECN capable response

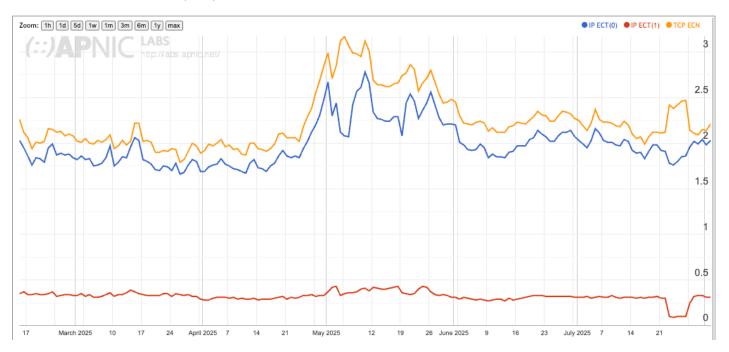

IP

ECN Control Loop

- A router "marks" IP packets at the onset of queue formation with a bit signal
- The Receiver echoes this bit up into the transport protocol reverse flow
- The sender reduces its sending window size (and notifies the receiver that it was performed this window reduction)

Explicit Congestion Notification

Explicit Congestion Notification


- Sparse signal (single bit)
- Both hosts and routers need to be ECN aware
- IP level marking requires end host protocol surgery at both ends:
 - Receivers need to reflect ECN bits
 - Senders need to pass IP CE up to the TCP session to signal a need to reduce the sending rate

ECN Issues

- It would be good if everyone did it!
 - That probably means every router and every end host running TCP (and QUIC)
 - How are we doing in deploying ECN?

ECN Issues

ECN Use in World (XA)

2%!!!!

How to detect the onset of queuing?

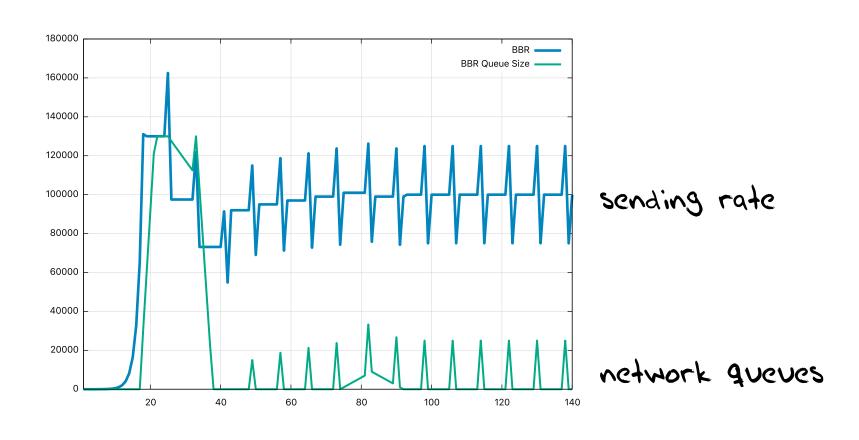
 By getting the network's routers to report when queues are forming!

OR

 By detecting the onset of queue-based delays in the measured RTT

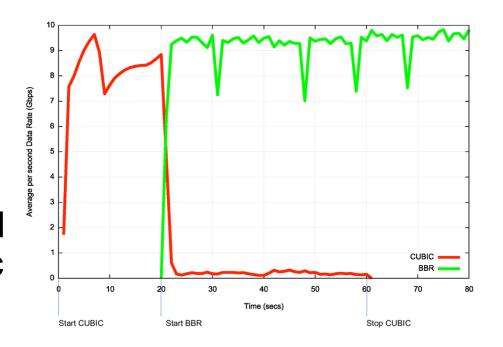
Flow Control Evolution

- Current flow control systems make small continual adjustments every RTT interval and a massive adjustment at irregular intervals
 - As the flow rate increases the CA adjustments of 1 segment per RTT become too small
 - Rate halving is a massive response


OR

- We could use a system that only made periodic adjustments every n
 RTT intervals based on delay probing
 - And set the adjustment to be proportionate to the current flow rate

BBR Design Principles

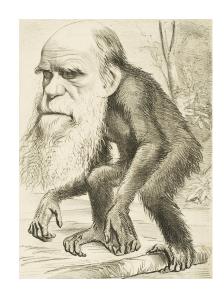

- Pace the sending packets to avoid the need for network buffer rate adaptation
- Probe the path capacity only intermittently (every 8th RTT)
- Probe the path capacity by increasing the sending rate by 25% for an RTT interval and then drop the rate to drain the queue:
 - If the RTT of the probe interval equals the RTT of the previous state, then there is available path bandwidth that could be utilised
 - If the RTT of the probe rises, then the path is likely to be at the onset of queuing and no further path bandwidth is available
- Do not alter the path bandwidth estimate in response to packet loss!

Idealised BBR profile

BBR Politeness?

- BBR will probably not constantly pull back when simultaneous loss-based protocols exert pressure on the path's queues
- BBR tries to make minimal demands on the queue size, and does not rely on a large dynamic range of queue occupancy during a flow

Our Environment...


It's a pretty comprehensive mess:

- A diverse mix of e-2-e TCP control protocols
 CUBIC, NewRENO, LEDBAT, Fast, BBR, Compound
- A mix of traffic models
 Buffer-filling streamers, flash bursts, bulk data
- A mix of active queue management disciplines
 RED, WRED, CODEL, FQ, none
- A mix of media
 Wire line, mobile, WiFi
- A mix of buffer size deployments
- Sporadic ECN marking

Protocol Darwinism?

What "wins" in this diverse environment?

- Efficiency is perhaps more critical than fairness as a "survival fitness" strategy
- I suspect that protocols that make minimal assumptions about the network will be more robust than those that require certain network characteristics to operate efficiently
- Protocols that operate with regular feedback mechanisms appear to be more robust than irregular "shock" treatment protocols

What is all this telling us?

- We actually don't know all that much about fine-grained behaviour of large-scale high capacity switching systems.
- Some of our cherished assumptions about network design may be mistaken
- Moving large data sets over very high-speed networks requires an entirely different approach to what we are doing today

The Internet still contains a large set of important unsolved problems!

That's it!

Questions?