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November 1859
Charles Darwin published a monumental work 
that described a theory of the origins of the 
diversity of life through a process of natural 
selection, a finding initially jointly authored in a 
paper by Alfred Wallace and Charles Darwin

It described a natural process that is 
commonly corrupted as “survival of the fittest”

It’s not just the living world where we observe 
these evolutionary pressures 



The Evolution of Speed
1980’s

– TCP rates of Kilobits per second
1990’s

– TCP rates of Megabits per second
2000’s

– TCP rates of Gigabits per second
2010’s

– TCP rates of tens of Gigabits per second
2020’s

– TCP rates of tens of Gigabits per second
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Today
• Optical transmission speeds 

are now edging into multi-
Terabit capacity

• But peak TCP session 
speeds across the network 
are not keeping up

• Why not?
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TCP is the Internet

• The Transmission Control Protocol is an end-to-end 
protocol that creates a reliable stream protocol from the 
underlying IP datagram device

• This single protocol is the “beating heart” at the core of 
the Internet

• TCP operates as an adaptive rate control protocol that 
attempts to operate efficiently and fairly



TCP Performance Objectives
To maintain an average flow which is both Efficient and Fair
Efficient:

– Minimise packet loss
– Minimise packet re-ordering
– Do not leave unused path bandwidth on the table!

Fair:
– Do not crowd out other TCP sessions
– Over time, take an average 1/N of the path capacity when there are 

N other TCP sessions sharing the same path



It’s a Flow Control process

• Think of this as a multi-
flow fluid dynamics 
problem

• Each flow has to gently 
exert pressure on the 
other flows to signal 
them to provide a fair 
share of the network, 
and be responsive to 
the pressure from all 
other flows



TCP Control

Data sending rate is matched to the 
ACK arrival rate 

TCP is an ACK Pacing protocol
If the sender sends one packet each time it receives an ACK, then the sender will 
maintain a steady number of packets in flight within the network



TCP Control

• Ideally TCP would send packets at a fair share of available 
network capacity. But the TCP sender has no idea what 
“available network capacity” means.

• So, TCP uses ‘rate adaptation’ to probe into network, 
increasing the sending rate until it receives a signal that the 
sending rate is ‘too fast’

• We’ve been experimenting with various forms of TCP rate 
adaptation for decades!



“Classic TCP” – TCP Reno
• Additive Increase Multiplicative Decrease (AIMD)

– While there is no packet loss, increase the sending rate by one 
segment (MSS) each RTT interval

– If there is packet loss (detected by duplicate ACKs) pause for 1xRTT 
and decrease the sending rate by 50% over the next  RTT Interval by 
halving the sender’s send window

• Start Up
– Each RTT interval, double the sending rate
– We call this “slow start” – probably because its anything but slow!!!



The Classic TCP Picture

Queue formation
Queue drain



Changing TCP’s control algorithm

• The TCP packet format is invariant

• But the control algorithm can vary

• What defines a “fitter” control algorithm?

– Be no less ‘aggressive’ than everyone else
– Try to exploit opportunities that others do not 

– But don’t destroy the environment (network) 



Carriage Service Challenges

• Radio system with non-congestion loss behaviours

• LEO satellite services with very high jitter elements

• Very high bandwidth services pose a challenge to linear 
rate increase

• How to take advantage of equal-cost multi path frameworks

• Session “pulsing” used by streaming services



CUBIC

• CUBIC is designed to be useful for high-speed sessions while still 
being ‘fair’ to other sessions and also be efficient even at lower speeds

• Rather than probe in a linear manner for the sending rate that triggers 
packet loss, CUBIC uses a non-linear (cubic) search algorithm



CUBIC and Queue formation

Total Queue Capacity
(Onset of Packet Loss)

Link Capacity Capacity
(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain



CUBIC assessment

• Can react quickly to available capacity in the network

• Tends to sit for extended periods in the phase of queue 
formation

• Can react efficiently to long fat pipes and rapidly scale up 
the sending rate

• Operates in a manner that tends to exacerbate ‘buffer bloat’ 
conditions



And there’s a whole lot more…

TCP Variant Feedback 
 

RENO Loss AIMD 
Vegas  Delay 

 

High Speed 
TCP 

Loss 
 

BIC Loss Binary Increase 
CUBIC Loss Cubic function increase - Linux-Adopted 

Agile-TCP Loss High Speed - Low Delay 
H-TCP Loss High Speed 

Fast Delay Akamai Propriatary 
Compound 

TCP 
Loss/Delay Microsoft Adopted 

Westwood Loss Dynamic setting of Slow Start Threshold 
Elastic TCP Loss/Delay High Speed - High Delay 

 



TCP and Buffers – the Theory
• When a sender receives a loss signal it repairs the loss and 

halves it’s sending window
• This will cause the sender to pause for the amount of time to 

drain half the outstanding data in the network (1xRTT interval)
• Ideally, this exactly matches the amount of time taken for the 

queue to drain
• At the time the queue is drained the sender resumes its sending 

(at half the rate) and the buffer has fully drained
• For this to work efficiently, the queue size for a link should equal 

the delay bandwidth product of the link it drives



TCP and Buffers

Buffer Too Big: The queue never drains, so part of the buffer 
just adds delay to the connection

Sender’s window recovery interval
(1xRTT)
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TCP and Buffers

Buffer Too Small: The queue drains, and the sender 
operates below bottleneck speed – so the link is under-used

Sender’s window recovery interval
(1xRTT)
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TCP and Buffer Size

The “general” rule of thumb for configuring the buffer size in a 
router is:

Size = (BW ∙ RTT)

Using the bandwidth and the roundtrip delay of the link being 
driven 
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From 1 to N – Scaling Switching
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• This finding of buffer size relates to a single flow through a 
single bottleneck resource

• What happens to buffers with more simultaneous flows and 
faster transmission systems?



Flow Mixing

• If 2 flows use a single buffer and they resonate precisely 
then the buffer still needs to be delay-bandwidth size

• If they are precisely out of phase the common buffer 
requirement is reduced by 25%
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Smaller Buffers?
• What about the case of N de-synchronised flows?

Size = (BW ∙ RTT) / √N

Assuming that the component flows manage to achieve a fair outcome 
of obtaining 1/N of the resource in a non-synchronised manner, then the 
peak buffer resource is inversely proportionate to the square root of N 
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The Role of Buffers

• Buffers in a network serve two essential roles:

– smooth sender burstiness

– Multiplexing N inputs to 1 output



Sender Pacing (Fair Queuing)

• Distribute cwnd data across the entire RTT interval

• Removes burst adaptation pressure on network buffers

net.core.default_qdisc=fq

This is important –

EVERY sender s
hould have

 pacing ena
bled!



Tiny Buffers?

• If all senders ‘paced’ their sending to avoid bursting, and 
were sensitive to the formation of standing queues then we 
would likely have a residual multiplexing requirement for 
buffers where:

B >= O(log W)
where W is the average flow window size
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Why is this important?

• Because memory speed is not scaling at the same rate as 
transmission or switching

• Further capacity and speed improvements in the network 
mandate reduced memory demands within the switch



Switching Chip Design TradeOffs

• On-Chip memory is faster, but limited to between ~16M to ~64M
• A chip design can include an interface to external memory banks

but the memory interface/controller also takes up chip space and 
the external memory is slower

• Between 20% to 60% of switch chip real estate is devoted to 
memory / memory control

• Small memory buffers in switch design allows for larger switch 
fabric implementations on the chip
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Optimising Flow State
• There are three ‘states’ of flow management:

– Under-Utilised – where the flow rate is below the link capacity and no queues 
form

– Over-Utilised – where the flow rate is greater that the link capacity and queues 
form 

– Saturated – where the queue is filled and packet loss occurs

• Loss-based control systems probe upward to the Saturated point, and back off 
quickly to what they guess is the Under-Utilised state in order to the let the queues 
drain

• But the optimal operational point for any flow is at the point of state change from 
Under to Over-utilised, not at the Saturated point



Under-Utilised Over-Utilised Saturated

RTT and Delivery Rate with 
Queuing



How to detect the onset of 
queuing?

• By getting the network’s routers to report when queues 
are forming!

Version IHL Total Length
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TCP



ECN Control Loop

• A router “marks” IP packets at the onset of queue formation with a 
bit signal

• The Receiver echoes this bit up into the transport protocol reverse 
flow 

• The sender reduces its sending window size (and notifies the 
receiver that it was performed this window reduction)

IP

TCP



Explicit Congestion Notification



Explicit Congestion Notification

• Sparse signal (single bit)

• Both hosts and routers need to be ECN aware

• IP level marking requires end host protocol surgery at both 
ends:

• Receivers need to reflect ECN bits

• Senders need to pass IP CE up to the TCP session to 
signal a need to reduce the sending rate



ECN Issues

• It would be good if everyone did it!

– That probably means every router and every end host 
running TCP (and QUIC)

– How are we doing in deploying ECN?



ECN Issues

2%!!!!



How to detect the onset of 
queuing?

• By getting the network’s routers to report when queues 
are forming!

OR

• By detecting the onset of queue-based delays in the 
measured RTT



Flow Control Evolution
• Current flow control systems make small continual adjustments every 

RTT interval and a massive adjustment at irregular intervals
– As the flow rate increases the CA adjustments of 1 segment per RTT 

become too small
– Rate halving is a massive response

OR
• We could use a system that only made periodic adjustments every n

RTT intervals based on delay probing
– And set the adjustment to be proportionate to the current flow rate
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BBR Design Principles

• Pace the sending packets to avoid the need for network buffer rate 
adaptation

• Probe the path capacity only intermittently (every 8th RTT)
• Probe the path capacity by increasing the sending rate by 25% for an 

RTT interval and then drop the rate to drain the queue:
– If the RTT of the probe interval equals the RTT of the previous 

state, then there is available path bandwidth that could be utilised
– If the RTT of the probe rises, then the path is likely to be at the 

onset of queuing and no further path bandwidth is available
• Do not alter the path bandwidth estimate in response to packet loss!



Idealised BBR profile

sending rate

network queues



BBR Politeness?
• BBR will probably not constantly 

pull back when simultaneous 
loss-based protocols exert 
pressure on the path’s queues

• BBR tries to make minimal 
demands on the queue size, and 
does not rely on a large dynamic 
range of queue occupancy 
during a flow



Our Environment…
It’s a pretty comprehensive mess:

– A diverse mix of e-2-e TCP control protocols
CUBIC, NewRENO, LEDBAT, Fast, BBR, Compound

– A mix of traffic models
Buffer-filling streamers, flash bursts, bulk data

– A mix of active queue management disciplines
RED, WRED, CODEL, FQ, none

– A mix of media
Wire line, mobile, WiFi

– A mix of buffer size deployments
– Sporadic ECN marking 



Protocol Darwinism?
What “wins” in this diverse environment?

– Efficiency is perhaps more critical than fairness
as a “survival fitness” strategy

– I suspect that protocols that make minimal 
assumptions about the network will be more robust 
than those that require certain network 
characteristics to operate efficiently

– Protocols that operate with regular feedback 
mechanisms appear to be more robust than 
irregular “shock” treatment protocols



What is all this telling us?
• We actually don’t know all that much about fine-grained 

behaviour of large-scale high capacity switching systems.
• Some of our cherished assumptions about network design may 

be mistaken
• Moving large data sets over very high-speed networks requires 

an entirely different approach to what we are doing today

The Internet still contains a large set of important unsolved 
problems!

47



That’s it!

Questions?


