
LocalRoot++
Making Localroot the default in

the DNS

Geoff Huston

The Role of the Root in the DNS
Every DNS resolution starts with root data

But you knew all this!

2

Root Query Load over time

From https://github.com/rssac-caucus/RSSAC002-data

202520212017
3

https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data

Root Query Load over time

From https://github.com/rssac-caucus/RSSAC002-data

Chrome stopped their use of Chromeiods

202520212017
4

https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data

Root Query Load over time

From https://github.com/rssac-caucus/RSSAC002-data

130B Queries per day
Jan 25

90B Queries per day
Jan 23

202520212017
5

https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data

Root Growth

• That’s a 40% growth over two years!
• No other aspect of the Internet’s common infrastructure service portfolio

has grown by the same relative volume over this period
• Indeed, many of the Internet’s metrics are showing signs of market

saturation

• I thought that queries to the root servers were only used to prime
recursive resolvers on startup, and refresh expired cached entries
• Which makes this growth profile challenging to explain!

6

Aside: The Economics of the DNS

• Conventionally, when a good is consumed the consumer pays the
producer a fee to compensate for the cost of production
• Increasing consumption generates additional fees which can fund higher

production volumes
• BUT DNS queries are essentially unfunded

• ISPs bundle the cost of operation of their in-house recursive resolver into their
access fee

• No recursive resolver pays authoritative servers to answer queries about the
domains that they serve

• If there is a revenue stream, it comes from the DNS zone administrators who are
paying for these nameservers to serve their zone.

• Except for the root zone
• Which no one pays for!

7

The Inherent Contradiction

• How are we ensuring that the root zone service can continue to
grow in capacity in response to this resumption in the growth of
query rates?
• Somehow, we need to factor in the apparent need to escalate the

investment of resources that are in effect donated into the DNS to
operate this service by this small collection of root service
operators.

8

How can we further scale the
root service?

9

More Named Root Servers

• Why not just expand the number of named root services from 13
to some a larger number?
• 13 was based on a non-fragmented priming response in an IPv4 only

environment
• When we moved to dual stack operation it was no longer possible to keep

the response with 512 octets
• A priming response is 811 bytes these days

• Adding more named servers to the root does not necessarily add
useful resilience nor does it add useful capacity

10

More Root Service Platforms

Another option is to use the inherent parallelism that’s
obtained through anycast, and this has been
enthusiastically embraced by the root name service
operators. Anycast increases overall system capacity
and improves service resilience

Anycast doesn’t necessarily result in even load
balancing across servers

Anycast Site Counts for Root Servers, March
2025 (https://root-servers.org/)

11

https://root-servers.org/
https://root-servers.org/
https://root-servers.org/

More Root Service Platforms

• Even this anycast form of expanding the distributed root service
may not be enough in the longer term.
• If we are facing a 25% compound annual query growth rate, then

in four years from now we may need double the root service
capacity from the current levels, and in a further four years we’ll
need to double it again. Exponential growth is a very harsh master.
• Can this anycast model of anycast replicated root servers expand

indefinitely?
• Or should we look elsewhere for scaling solutions?

12

Caching for Negative Responses

• One half of all queries to
the Root Servers are
answered with
NXDOMAIN
• RFC8198 describes a

way to cache the
negative space in the
root zone by leveraging
the NSEC records

% of responses that are NXDOMAIN - RSSAC002 data 13

https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data

Caching for Negative Responses

• One half of all queries to
the Root Servers are
answered with
NXDOMAIN
• RFC8198 describes a

way to cache the
negative space in the
root zone by leveraging
the NSEC records

% of responses that are NXDOMAIN - RSSAC002 data 14

https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data
https://github.com/rssac-caucus/RSSAC002-data

Aren’t we negative caching
already?
• Bind supports this function as of release 9.12.
• Unbound supports this as of release 1.7.0.
• Knot resolver supports this as of version 2.0.0.

• But the queries at the root zone keep growing despite the declining
proportion of queries resulting in an NXDOMAIN response!
• How can we increase the effectiveness of local caching and

reduce the query dependence on the root zone servers?

15

Cache the ENTIRE Root Zone?

• Rather than caching individual entries from the root zone why not
configure recursive resolvers to cache the ENTIRE root zone
• Its tiny - 2.2Mbytes!
• It’s signed with a ZONEMD record, so the resolver can validate the

authenticity and currency of the root zone
• It’s private – queries to the root zone don’t leak beyond the

recursive resolver
• This approach is documented as RFC 8806 (using AXFR - zone

transfer over TCP)

16

Cache the ENTIRE Root Zone

17

Cache the ENTIRE Root Zone

How?

Bind config:
// prime the server with knowledge of the root servers
zone "." { type mirror; };

Knot config:
modules.load(‘prefil’)
 Prefill.config({ [‘.’] = { url=‘https://www.internic.net/domain/root.zone’, interval=86400 })

Unbound config:
auth-zone:
 name: "."
 url: "https://www.internic.net/domain/root.zone"
 fallback-enabled: yes
 for-downstream: no
 for-upstream: yes
 zonefile: "root.zone"
 prefetch: yes

18

Why?

• Increased resolution speed
• It’s a local lookup every time

• Improved privacy
• No root queries leak!

• Decreased root zone attack surface
• Non-existent root label queries are answered directly by the resolver and

not passed into the DNS

• Reduced external service dependence in the DNS

19

Why don’t we...

• Make a prefetch of the root zone the default action for recursive
resolvers?
• And fall back to incremental queries only when/if the prefetch fails

draft-wkumari-dns-localroot-bcp to be discussed at IETF124
proposes using a BCP to change the default behaviour of DNS
resolvers to make localroot the default action

20

Thanks!

21

